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Abstract

Water is a critical factor limiting economic and social development in Morocco and the Mediter-
ranean Basin. In addition to strong seasonality and high inter-annual variability, annual pre-
cipitation remains low (<500mm) across much of the region. Furthermore, the situation is not
expected to improve under climate change as models project a sustained decline in precipita-
tion in the Mediterranean, most pronounced during the winter season. Despite the significance
of such projections, a comprehensive theory for Mediterranean winter climate change is still
lacking. Here, we adopt a multi-faceted approach to investigate precipitation variability and
change over Morocco and the Mediterranean, with a focus on resulting water availability. First,
we link inter-annual variability of seasonal precipitation in Morocco to global sea-surface tem-
peratures, and develop empirical forecast models that can predict up to 35% of this variability
with a one-month lead time. Turning our attention to regional climate change processes and
impacts, we show how future winter precipitation trends in the Mediterranean directly re-
sult from projected circulation anomalies. The enhanced advection of dry air from the Sahara
Desert caused by these anomalies is key in causing precipitation to decline over Morocco. In ad-
dition, a major contribution of this work is to propose a physical explanation for the circulation
trends involving planetary-scale circulation shifts and reduced warming of the Mediterranean
Sea compared to land. We develop high-resolution regional climate simulations over Morocco
to assess future risks from drought and weather extremes relevant to agriculture. Our results
point to robust declines of 25-45% in annual precipitation and confirm physical drivers identi-
fied at the regional scale. Because snow is such an important component of the water cycle in
this semi-arid region, we also investigate snowpack dynamics in the High Atlas and we quan-
tify components of the snow water balance for the first time. Future trends in snowpack and
associated runoff are also investigated: at best, snowpack volume will decline by at least 60%,
which, combined with increased air dryness, will likely reduce mountain runoff by 60%. Our
findings have important implications for climate change adaptation and water management in
Morocco, particularly in agriculture, which uses 90% of all available water.
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3-10 Three examples of filtered CCA coefficient maps for May-June-July North At-

lantic SST anomalies, computed against DJF precipitation over the Oum-Er-

Rbia. Each map was produced by selecting 50 random years in the period of

observation, 1950-2015. Even when being rather conservative and keeping 75%

of the available data, the obtained maps are very similar and the corresponding

identified predictors would not differ much. . . . . . . . . . . . . . . . . . . . . 105

4-1 CMIP5 winter (DJF) multi-model mean projected change in (a) worldwide

sea-level pressure (SLP), (c) Mediterranean SLP and 850 hPa winds, and (d)

Mediterranean precipitation under RCP8.5 (2071-2100 minus 1976-2005). His-

torical DJF SLP contours also shown on (c) (from 1010 to 1024 hPa every 2

hPa; closed contour over North Africa is 1024 hPa). Dots (a,d) indicate that

more than 80% of models agree on the sign of the change. (b) Median (black)

and 90% inter-model spread (gray) of relative change in annual precipitation

in CMIP5 models under RCP8.5 (2071-2100 minus 1976-2005), against annual

mean historical (1976-2005) precipitation, for 25 land regions covering the whole

globe [100]. The Mediterranean is highlighted in red. In (a-d), projections have

been renormalized by each model’s global projected temperature change. . . . 111
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4-2 5-year smoothed median (black line) and range (gray shading) of CMIP5 model

simulations of DJF Mediterranean (a) sea-level pressure (0-30◦E / 32-48◦N)

and (b) precipitation (20◦W-40◦E / 30-45◦N) anomalies (map on Figure S1),

alongside observations/reanalysis data from HadSLP2, NOAA 20CR and ERA-

20C (in (a)) and GPCP and CRU TS4 v2 (in (b)). . . . . . . . . . . . . . . . 112

4-3 (a) DJF Mediterranean (20◦W-40◦E/30-45◦N) precipitation against SLP (0-

30◦E/32- 48◦N) anomalies in historical (1976-2005) and RCP8.5 (2071-2100)

CMIP5 simulations, and observations (HadSLP2/GPCP, 1979-2017). (b) Change

in DJF Mediterranean precipitation and SLP across CMIP5 models, with 95%

confidence intervals and least-squares best fit. Changes are re-scaled by each

model’s projected global temperature change. . . . . . . . . . . . . . . . . . . 113

4-4 (a) CMIP5 multi-model mean 300 hPa meridional winds in the historical and

RCP8.5 scenarios, averaged between 20◦ and 50◦N. See Simpson et al., figures

1 and 4 [231]. (b-c) CMIP5 multi-model mean projected change in DJF merid-

ional winds at (b) 300 hPa and (c) 850 hPa. For each model, projections were

normalized by its mean annual global temperature change to roughly account

for differences in climate sensitivity across models. Dots indicate that more

than 80% of models agree on the sign of the change. . . . . . . . . . . . . . . . 120

4-5 (a) Value of the DJF external mode at 850hPa and 40◦N as a function of lon-

gitude (normalized by its 300 hPa value): CMIP5 median (black), 95% range

(light blue shading) and ERA-Interim (blue). The external mode is normalized

so that it is equal to 1 at 300hPa. (b) CMIP5 multi-model mean DJF meridional

wind change (35-45◦N average) at 300 hPa (black), 850 hPa (red), the estimate

based on the external mode structure (solid blue) and the estimate based on the

zonal-mean external mode (dashed blue). In both panels, the Mediterranean

region (15◦W-40◦E) is highlighted in light gray. . . . . . . . . . . . . . . . . . 124
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4-6 (a) DJF Mediterranean mean vertical wind shear, from ERA-Interim. (b)

CMIP5 multimodel-mean bias in DJF Mediterranean vertical wind shear. (c)

Bias in vertical wind shear over the southeastern Mediterranean region (20-

50◦E/30-40◦N, see rectangle in (b)) against bias in Eastern Mediterranean (16-

46◦E) external mode magnitude at 40◦N across CMIP5 models. The best-fit

linear regression line is shown in dashed black. In (a-c), vertical wind shear is

defined as 300 hPa minus 850 hPa zonal wind. . . . . . . . . . . . . . . . . . . 125

4-7 850 hPa meridional wind change (35-45◦N average) in the Western (15◦W-15◦E,

blue) and Eastern (16-46◦E, orange) Mediterranean in CMIP5 (circles) and

AMIP (crosses) models. The changes estimated through the external mode

(equation 4.6) are plotted versus the changes in the models. Panel (a) shows

wind values averaged over the respective intervals, while (b) shows the maximum

values in those intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4-8 Annual cycle of monthly inter-model correlation (blue) and root mean-square

error (black) between CMIP5 850 hPa meridional wind change and the external-

mode based estimate, for (a) the Western (15◦W-15◦E) and (b) the Eastern

(16-46◦E) Mediterranean. Blue whiskers indicate 95% confidence intervals for

the correlation coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4-9 CMIP5 multi-model mean best fit linear slope of target-vs-reconstructed DJF

SLP. Dots indicate 1% sifnificsance of the corresponding correlation coefficient. 130
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4-10 Northern Hemisphere CMIP5 multi-model mean change in DJF SLP (a) esti-

mated by dynamical adjustment, and (b) projected by CMIP5 models. Stippling

shows agreement on the sign of the change by 80% of models. Numbers indicate

average value within the box (dashed). (c) Model vs. dynamically-reconstructed

DJF Mediterranean (0-30◦E/32-48◦N) SLP anomalies in historical (black) and

RCP8.5 (red) simulations, for all 30 CMIP5 models. (d) Mediterranean (0-

30◦E/32-48◦N) CMIP5 inter-model change in DJF SLP estimated by the dy-

namical adjustment model along with 90% confidence intervals. The two models

used in Brogli et al. (2019) are highlighted in red (see also section 4.7.3). . . . 131

4-11 Northern Hemisphere CMIP5 multi-model mean change in (a,b) November and

(c,d) March-April SLP (a,c) estimated by dynamical adjustment, and (b,d)

projected by CMIP5 models. Stippling shows agreement on the sign of the

change by 80% of models. Numbers indicate average value within the box

(dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4-12 (a) CMIP5 multi-model DJF 2-meter temperature change under RCP8.5 (2071-

2100 minus 1976-2100). The box encompasses the area used to calculate the

sea-land temperature index. (b) Distribution of historical (black) and RCP8.5

(red) DJF sea-land temperature index anomalies across CMIP5 models. (c)

5-year smoothed median value (black line) and range (gray shading) of CMIP5

model annual values (1850-2095) of DJF sea-land temperature index anomalies,

alongside observations from CRU, NOAA Global Surface Temperature, ERSST

and HadISST. In panel (c) only, the temperature index is defined using SST

over the sea, not 2-meter temperature, since the latter has limited availability

over sea areas in observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4-13 Annual cycles of sea-land temperature index difference between "0C" and "+1.5C"

experiments, for ERA and MPI experiments combines. Boxes represent the 50%

inter-annual range, and whiskers the full range of inter-annual variability. "Sea"

and "land" values are defined by the box on Figure 4-12-a. The corresponding

cycle for the CMIP5 multi-model mean is shown by the dashed red line. . . . . 136
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4-14 (a) Difference in DJF mean 2-meter temperature between the "0C" and "+1.5C"

experiments (average of ERA and MPI simulations). (b) Change in DJF 2-meter

temperature under RCP8.5 (2071-2100 minus 1976-2005), to which the average

Mediterranean land warming (3.9K) was subtracted to highlight the relative

cooling over the sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4-15 (a) Annual cycle of monthly Mediterranean (0-30◦E/32-48◦N) SLP change under

RCP8.5 (2071-2100 minus 1976-2005) across CMIP5 models. (b) Annual cycle

of monthly difference in Mediterranean SLP between the "0C" and "+1.5C"

experiments ("0C" minus "+1.5C"), ERA and MPI combined. In both panels,

boxes represent the 50% range and whiskers extend to the full range of values,

across all GCMs (in (a)) and all simulation years (in (b)). Median values are

shown by thick blue lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4-16 Difference in DJF (a,c) SLP and 850 hPa winds and (b,d) precipitation between

the +1.5C and 0C experiments (0C minus 1.5C) in the (a,b) ERA and (c,d) MPI

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4-17 Difference in (a,c) SLP and 850 hPa wind, and (b,d) zonally-averaged (0-40◦E)

air temperature, meridional wind and pressure velocity, between the "0C" and

"+1.5C" simulations ("0C" minus "+1.5C", average of ERA and MPI runs),

for winter (DJF, a-b) and summer (JJA, c-d). In (b,d), circulation vectors are

scaled such that 1 horizontal unit = 1 m/s; 1 vertical unit = 0.2 hPa/h. . . . . 140

4-18 Annual cycle of 925 hPa Mediterranean-average (10◦W-45◦E/30-45◦N) static

stability, from ERA-Interim (1979-2018). Boxes represent the 50% range over

the 40 years of data, and whiskers show the full range. . . . . . . . . . . . . . 141

4-19 Mediterranean (10◦W-45◦E) zonal-mean DJF (a) and JJA (b) vertical and

meridional circulation: vertical velocity (shaded) and wind in the meridional-

pressure plane (arrows), in ERA-Interim (1979-2018). Circulation vectors are

scaled such that 1 horizontal unit = 3 m/s; 1 vertical unit = 1 hPa/h. . . . . . 142
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4-20 Energy budget equation terms for the Eastern Mediterranean (20◦-35◦E/30◦-

40◦N), estimated from ERA-Interim 6-hourly data (1980-2018). See equation

4.8 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4-21 (a) CMIP5 multi-model mean change in DJF 500 hPa pressure velocity, under

the RCP8.5 scenario. For each model, projections were normalized by its mean

annual global temperature change. Dots indicate that more than 80% of mod-

els agree on the sign of the change. (b) Change in column-integrated energy

budget terms across CMIP5 models, averaged over the Eastern Mediterranean

(see box in (a)) (A: diabatic warming; B: vertical advection; C: horizontal ad-

vection, see equation 4.8). (c) Eastern Mediterranean (20◦-35◦E/30◦-40◦N, see

box in (a)) DJF precipitation and p-velocity anomalies in historical (1976-2005)

CMIP5 models and the observed record (1979-2018: ERA-Interim p-velocity

and GPCP precipitation). (d) Change in Eastern Mediterranean DJF precipi-

tation and pressure velocity across CMIP5 models, normalized by each model’s

mean annual global temperature change. 95% confidence intervals are shown

by light gray bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4-22 CMIP5 multimodel mean change in DJF 925-850 hPa averaged specific humidity

(a) and dew point depression (c), normalized by each model’s annual global-

mean temperature change. Arrows indicate DJF (a) historical and (c) change in

925-850 hPa averaged winds. Wind arrows in (c) are colored according to mean

historical relative humidity at each point and shown only where 80% of models

agree on the sign of the change. (b) Western Mediterranean (15◦W-0◦/30◦-40◦N,

box in (a)) DJF precipitation and dew point depression change across CMIP5

models, normalized by each model’s mean annual global temperature change.

95% confidence intervals are shown by light gray bars. . . . . . . . . . . . . . . 147
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4-23 RCP8.5 change (2071-2100 minus 1976-2005) in Mediterranean 925-850 hPa

averaged specific humidity (a,b) estimated by dynamical adjustment based on

concurrent seasonal SLP anomalies and (c,d) CMIP5 multi-model mean, during

(a,c) DJF and (b,d) MAM. In (c,d), the zonal mean change was subtracted at

each latitude to make the range of values correspond to that in panels (a,b). . 148

4-24 (a) CMIP5 multi-model mean Northern Hemisphere 300 hPa geopotential height

change under RCP8.5 (2071-2100 minus 1976-2005). The zonal-mean change is

subtracted at each latitude to highlight zonal variability. (b) Difference in 300

hPa geopotential height between the "0C" and "+1.5C" experiments. . . . . . 150

5-1 (a) MRCM simulation domain and topography. (b) Sub-regions used for re-

gional analysis of precipitation projections: (A) Tajo, (B) Guadalquivir, (C)

Loukkos, (D) Sebou and (E) Oum-Er-Rbia watersheds. (c) Sub-regions used

for regional analysis of temperature projections: (a) Iberian coastal plain, (b)

Sierra Nevada, (c) Moroccan coastal plain and (d) Atlas Range. (a,c) are defined

by altitude <500m and (b,d) by altitude >1200m at the MRCM resolution. . . 158

5-2 Location of ground stations with available precipitation (blue crosses) and air

temperature (red diamonds) data in Morocco. . . . . . . . . . . . . . . . . . . 160

5-3 (a-d) DJF Western Mediterranean (15◦W-0◦/30-40◦N) precipitation against con-

current NAO circulation index (see text for definition); and (e-h) Pearson corre-

lation of DJF SLP to concurrent Western Mediterranean precipitation, in (a,e)

GPCP and NCEP-NCAR reanalysis (1979-2017); (b,f) GFDL-ESM2M; (c-g)

IPSL-CM5A-LR; and (d,h) MPI-ESM-MR. For (b-h) data covers the 1950-2004

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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5-4 (a-c) Spatial distribution of 30-year climatology of average DJF total precipita-

tion over the NWAIP: (a) TerraClimate, (b) MRCM-downscaled ERA-Interim

(ERA/MRCM), (c) ensemble mean of 13 CMIP5 GCMs (ENS/GCM) (see Ta-

ble S1). (d-e) Annual cycles of monthly land precipitation averaged over (d) the

southern Iberian Peninsula and (e) northwestern Morocco (see black contours

in (a-c)), in TerraClimate (black), ERA/MRCM (red) and ENS/GCM (blue).

The light blue shading corresponds to inter-GCM spread in the 13-member

GCM ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5-5 Annual DJF precipitation anomalies (mm/day) averaged over the five selected

watersheds, in TerraClimate (black) and ERA/MRCM (blue). Anomalies are

defined with respect to each series’ 1982-2011 average. . . . . . . . . . . . . . . 169

5-6 (a-b) (a) Monthly and (b) annual-average precipitation at stations and corre-

sponding ERA/MRCM grid cells. . . . . . . . . . . . . . . . . . . . . . . . . . 169

5-7 Spatial distribution of 30-year climatology of DJF average 2-meter air tem-

perature in (a) TerraClimate, (b) ERA/MRCM, (c) ENS/MRCM (ensemble

mean of MRCM simulations) and (d) ENS_BC/MRCM (ensemble mean of

bias-corrected MRCM simulations). Domain-averaged values over land are in-

dicated at the top left-hand corner of each plot. . . . . . . . . . . . . . . . . . 170

5-8 Annual cycle of daily temperature at GHCN stations and corresponding ERA/MRCM

values, corrected for elevation difference with stations using a locally-estimated

daily temperature lapse rate (first and third columns); Deviations from these

annual cycles plotted against each other (second and fourth columns), for all 11

available GHCN stations. Station names are indicated in top-left-hand corners. 172

5-9 Same as Fig. 5-7, for precipitation. . . . . . . . . . . . . . . . . . . . . . . . . 173
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5-10 MRCM ensemble-mean percentage change in (a,b) DJF and (c,d) MAM pre-

cipitation, under (a,c) RCP4.5 and (b,d) RCP8.5, 2071-2100 minus 1976-2005.

Mean values averaged over the five watersheds on Fig. 5-1-b are shown on the

left-hand side of each plot. Dots indicate agreement by three MRCM simula-

tions on the sign of the change. . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5-11 MRCM ensemble-mean percentage change in (a,c,e) DJF and (b,d,f) MAM (a,b)

precipitation, (c,d) P-E and (e,f) PET under the RCP8.5 scenario, 2071-2100

minus 1976-2005. Dots indicate agreement by three MRCM simulations on the

sign of the change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5-12 MRCM ensemble-mean change in (a,b) DJF and (c,d) JJA surface temperature,

under (a,c) RCP4.5 and (b,d) RCP8.5, 2071-2100 minus 1976-2005. Mean values

averaged over the four regions on Fig. 5-1-c are shown on the left-hand side of

each plot. Dots indicate agreement by three MRCM simulations on the sign of

the change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5-13 (a) DJF MRCM ensemble-mean historical (1976-2005) 850 hPa specific humid-

ity (shaded) and circulation (arrows). (b,c,d) MRCM ensemble-mean change

in 850 hPa DJF (b) specific humidity (shaded) and circulation (arrows), (c)

temperature and (d) relative humidity, under the RCP8.5 scenario, 2071-2100

minus 1976-2005. Hatching in (d) indicates disagreement by one of the three

models on the sign of the change. The solid black line in (b) is used to define a

regional wind index (see text). . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5-14 MRCM ensemble mean change in 850 hPa pressure-velocity in (a) DJF and (b)

MAM under the RCP8.5 scenario, 2071-2100 minus 1976-2005. . . . . . . . . . 181

5-15 ERA/MRCM mean 850 hPa temperature in (a) DJF and (b) MAM. . . . . . . 181
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5-16 (a) Distribution of November-April daily wind index values from ERA-Interim

(solid black line) and average daily precipitation from TRMM over northwestern

Morocco and the southern Iberian Peninsula (up to 38◦N) in each 30-degree

wind direction category (blue bars). (b) MRCM ensemble-mean distribution

of November-May daily wind index values in the historical (dashed black) and

RCP8.5 (dashed red) simulations, and relative change in the frequency of each

30-degree wind index category for the three MRCM runs (colored bars). (c,d)

MRCM ensemble-mean average 850 hPa (c) specific humidity anomaly (shaded)

and wind values (arrows) and (d) temperature anomaly, during "southeasterly

days" (when the wind index is between +90◦ and +180◦) in historical simulation.

Hatching in (c,d) indicates disagreement by one of the three models on the sign

of the anomaly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5-17 (a) Distribution of November-May daily wind index values from ERA-Interim

(solid black line) and average daily precipitation from TRMM over northwestern

Morocco and the southern Iberian Peninsula (up to 38◦N) in each 30-degree wind

direction category (blue bars). (b,d) Same as (a) but with data from (b) MPI-

ESM-MR, (c) IPSL-CM5A-LR and (d) GFDL-ESM2M, and with the addition

of the RCP8.5 wind index distribution (solid red lines). . . . . . . . . . . . . . 185

5-18 (a) Observed maximum CDD quantiles against quantiles estimated from a fitted

GEV distribution for each of the 88 stations. (b) ERA/MRCM maximum CDD

quantiles (original: blue; after bias-correction: red) against station quantiles,

for all 88 stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
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5-19 (a) Median of maximum November-April CDD length over northwestern Mo-

rocco, as estimated by a max-stable model fitted to ERA/MRCM bias-corrected

data at station locations (shaded contours) and in observed station data (filled

circles). The topleft inset shows the location of the analysis region within Mo-

rocco. (b) Percentage of stations experiencing a maximum CDD length longer

than N days as a function of N , in station data (median: blue diamonds; 95%

confidence interval: shaded light blue), bias-corrected ERA/MRCM (red +)

and historical bias-corrected MRCM runs (MPI+GFDL; median: dashed black;

range: shaded gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5-20 Change in median maximum November-April CDD length over northwestern

Morocco, as estimated by a max-stable model fitted to bias-corrected MPI and

GFDL MRCM data at station locations (MPI+GFDL average, shaded contours)

and in bias-corrected MPI/GFDL data at station locations (filled circles), under

(a) RCP4.5 and (b) RCP8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5-21 (a-c) Probability of a > 30-day long maximum CDD length between November

and April in the (a) historical, (b) RCP4.5 and (c) RCP8.5 scenarios, as inferred

from the fitted max-stable models (MPI+GFDL average). (d-f) As (a-c), but

for a 60-day threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5-22 Left axis: Fraction of area (see Fig. 5-19-a) experiencing a maximum CDD

length larger than N days as a function of N (dashed lines; black: historical;

purple: RCP4.5; red: RCP8.5). Right axis: Relative change in that same

fraction, as a function of N (solid lines; purple: RCP4.5; red: RCP8.5). For

both axes shading represents MPI-GFDL inter-model range. . . . . . . . . . . 192

5-23 (a) April-May daily average temperature maxima at GHCN stations and corre-

sponding maxima in the ERA/MRCM simulation, before (blue) and after (red)

bias-correction. (b) Same as (a), but for the quantiles of the two distributions. 193

27

��������������������������		�	��	�������������������
���




5-24 Fraction of stations experiencing a maximum April-May daily average temper-

ature higher than x as a function of x, in observations (diamonds), and the his-

torical (black), RCP4.5 (purple) and RCP8.5 (red) simulations. For the MRCM

simulations, dashed lines represent three-model (MPI, GFDL, IPSL) medians

and shading the three-model range. . . . . . . . . . . . . . . . . . . . . . . . . 194

6-1 (a) Annual precipitation over Morocco (TRMM 3B43 V7) and Oum-Er-Rbia

watershed. (b) Study area (solid black line) within the Oum-Er-Rbia watershed

(dashed line), with elevation in shaded contours, main cities (dots), river net-

work and snow station (cross). The four main dams whose catchments define

our study area are shown by red diamonds; from north to south and east to

west: El Hansali, bin-El-Ouidane, Moulay Hassan 1 and Moulay Youssef. . . . 201

6-2 (a) December-March average snow cover in the Oum-Er-Rbia basin (outlined

in dashed black), from MOD10A1 v6 (2001-2011). Data outside the direct

neighborhood of the basin is not shown. The study area (see below) is shown

by the thick solid black contour. (b) Annual cycle of snow cover extent in the

study area (mean: solid blue line, 90% range: blue shading). . . . . . . . . . . 202

6-3 Time series of weekly mean snow depth measured at Oukaimeden station (blue

dots) and fractional snow cover for the corresponding 500x500m MOD10A1 grid

cell (black line). Horizontal bars at the top highlight periods with more than

5% snow cover or 5cm snow depth. . . . . . . . . . . . . . . . . . . . . . . . . 203

6-4 Schematic of the methodology: Input data, snow model and output. . . . . . . 204

6-5 (a) Air temperature measure at Oukaimeden station against the corresponding

MODIS LST value, for daytime (red) and nighttime (blue) measurements. (b)

Daily cycle of air temperature at the Oukaimeden station (dashed black line:

30-minute time step; solid black: 6-hourly) and 6-hourly cycle of MODIS LST-

derived air temperature (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . 212
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6-6 November-April mean total precipitation (2000-2010) in (a) TRMM, (b) CHIRPS

and (c) GPM (shaded contours), along with mean relative biases with respect
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Chapter 1

Introduction

"We don’t govern water. Water governs us."1 Few places in the world embody this statement

more than Morocco, where water is the key limitation to economic and social development.

Located along the Atlantic and Mediterranean coasts, at the northwestern border of the im-

mense Sahara Desert, Morocco lives on the scarce winter rains brought by rare North Atlantic

storms. Every single accessible drop is used for human activity, but the threat of drought is al-

ways present. The dry climate and large inter-annual variability in precipitation make efficient

water management a real challenge, and the country is compelled to live at the rhythm of the

rains. Overall, the water resource per inhabitant, at about 800m3 (by comparison, this figure

is 8500m3 for the United States), puts the country under permanent water stress, though there

are significant spatial disparities between the wetter north and the drier south. In parallel,

climate change is expected to make the situation even harder for Morocco with a projected

40% decrease in precipitation under a business-as-usual greenhouse gas emission scenario. By

2040, Morocco may be among the world’s top 10 most water-stressed countries [161]. While

climate models generally fail to agree on the sign of future precipitation changes over land,

the Mediterranean Basin, and Morocco in particular, is one of the few land regions where all

models converge in predicting a robust drying over the upcoming decades. If realized, this

would put severe constraints on the country’s future development.

1Heart of dryness: How the Last Bushmen Can help Us Endure the Coming Age of Permanent Drought,
James Workman, Walker & Company, 2009
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Over the last decades, Morocco has gone through several major droughts which took their toll

on agricultural production and the economy. Although the country has been developing and

slowly shifting to industry and services, 40% of its workforce works in agriculture – mainly

smallholder farmers – and its burgeoning industry requires large amounts of water as well.

At the same time, large cities like Casablanca and Marrakech have been growing fast, and

with them the number of tourists attracted by the Moroccan sunshine. This puts a severe

strain on the water resource; desalination is not sufficient to compensate for demand growth

and drier regions even resort to unsustainable groundwater pumping to satisfy local demand.

This critical situation has led the Moroccan government to implement new large-scale water

conservation practices in the context of the "Green Morocco Plan", an ambitious strategy to

bring national agriculture into the 21st century. Construction is also currently expected to

begin on a costly water transfer project, designed to bring close to one billion cubic meters

a year from the wetter northern regions down to the drought-stricken central plains. Still,

the demand for water in Morocco already exceeds by far its renewable resources. To continue

on its path of development into the 21st century, Morocco will be compelled to make more

profound changes to its water use, technology and management practices, from agricultural

planning to the development of new infrastructure. Yet, despite, or rather because of, the

numerous constraints that it has to abide by, water management in Morocco has not evolved

in a long time. The water community is well aware of the problems and challenges it faces,

and of the necessity to adapt for the coming century, but is in dire need of fresh ideas that

science, among others, can bring to them.

To this day, robust knowledge of future water scenarios, whether at the seasonal or multi-

decadal horizon, is still lacking. Short-term projections are difficult because of the large in-

ternal variability in the processes that govern seasonal precipitation. Additionally, long-term

trends point towards a strong regional decline in precipitation, but the processes responsible

for this drying are still largely unknown, and therefore it is hard to understand and trust model

projections, and reduce their uncertainty. Finally, the regional impacts on the water cycle of

the projected climate trends remain uncertain; the scarcity of data makes it difficult to assess

how river runoff may respond to drying and warming, especially in the high mountains where

snow is a major component of the water cycle.
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This work tackles these challenging questions by developing a detailed understanding of

Morocco’s hydroclimate and of its predictability for present and future conditions. We begin

with a broad overview of the water cycle in Morocco (Chapter 2), followed by the analysis

of inter-annual variability in precipitation and its predictability at seasonal timescales using

simple statistical models (Chapter 3). Long-term hydroclimatic trends are then investigated

with a variety of global and regional climate simulations, and put in the context of Mediter-

ranean climate change, for which we develop new physical insights that explain the robustness

of model trends in this area (Chapters 4 and 5). Finally, we develop projections for river runoff

and water availability at the catchment scale by modeling snowpack in the High Atlas under

current and future climates (Chapter 6), before summarizing our main findings and discussing

potential future work (Chapter 7). Existing literature and datasets used for our analyses are

presented and discussed at the beginning of each chapter.
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Chapter 2

Morocco, A Hotspot for Climate

Variability and Change

2.1 Introduction

Niched at the junction of the Atlantic and Mediterranean coasts, on the north-western border

of the Sahara Desert, the Kingdom of Morocco extends over an area of 710850 km2 between

latitudes of 21◦ and 36◦N, and longitudes 17◦ and 1◦W. Because of its topography and geo-

graphical location, Morocco is characterised by a wide range of climates, from the desert to

the south to the relatively wet regions to the north. The country lies between the southern

edge of the mid-latitude storm track and the northwestern fringe of the Hadley cell descent

region, in the transition zone between the subtropical desert and wet mid-latitudes. Large

parts of the country are mountainous, especially in its interior, home to one of Africa’s major

mountain chains, the Atlas Range (Fig. 2-1), peaking at 4167m (Jbel Toubkal). The Atlas

stretches eastwards from the Atlantic coast near 30◦N to Tunisia, roughly following northern

Africa’s Mediterranean coast. This very specific geographical setting is responsible for steep

gradients of precipitation and temperatures, and substantial levels of intra- and inter-annual

precipitation variability. Water is almost everywhere scarce and erratic, except in the very

north of the country. Cropland is essentially limited to the northwestern plains, which either
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receive sufficient rainfall or which can be irrigated from rivers draining mountain regions.

Morocco is home to 36 million people, a number that has been growing at 1-1.5% per year for

the last three decades [272]. While its economy is largely focused on services (a sector that

accounts for 55% of the national GDP), it remains very dependent on industry (31%) and

agriculture (14%). Tourism, agriculture and phosphate minerals are Morocco’s three major

resources, responsible for most of the jobs and much of the income. Agriculture itself employs

40-45% of the country’s workforce, mostly smallholder farmers [14]. Consequently, almost

40% of the population still lives outside cities [272]. Morocco is also the world’s third largest

producer of phosphate minerals and home to about 75% of proven global reserves. Exports are

dominated by textile products (23% of exports), phosphate rock and its derivatives like phos-

phoric acid and fertilizers (16%), agricultural products (15%) and industrial equipment (14%)

[183]. Consequently, the economy is highly sensitive to agricultural and phosphate prices, as

well as to the amount of annual precipitation which impacts agricultural yields. It is also very

dependent on water, for crop production obviously, but also phosphate transport and refining,

as well as textile and industrial production, all large consumers of freshwater.

Therefore, water largely constrains life and socio-economic development in Morocco. Its

scarcity and variability within the year and from year to year create enormous challenges

that must be addressed to sustain viable agricultural and industrial systems. In addition,

long-term prospects under climate change point to ever-increasing dryness from decreases in

precipitation and rising temperatures. Consequently, Morocco can justifiably be considered a

top hotspot of climate variability and change. This chapter gives a broad introduction to the

water challenges faced by Morocco, which the rest of the thesis will address. We begin with

an overview of Morocco’s hydroclimate, followed by a presentation of its water resources and

management strategies, to finish on the important challenges that the country faces now and

will face in the future.
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2.2 Hydroclimatology of Morocco

2.2.1 Geography and climate

Although warm and dry overall, Morocco exhibits a significant spatial variability in climate

and water availability [147]. The country can be roughly divided into three main climate zones:

the northwestern plains, home to 95% of the country’s population, the mountainous interior,

and the arid south [27, 147]. The coastal plains stretch from the Atlantic and Mediterranean

coasts to the Rif, the Middle and the High Atlas ranges. There, the climate is of the Mediter-

ranean type, characterized by mild and wet winters, and hot and dry summers. Minimum daily

temperatures occur in January, at about 10-15◦C in the plains, seldom going below freezing;

maximum daily temperatures are reached in July, and range from 30-35◦C to the north and

along the Atlantic coastline, up to 45-50◦C in the interior, near Marrakech for instance. The

wet season in the northwest extends from about October to April around 35◦N and November

to March around 31◦N (Fig. 2-2), and brings 80-85% of annual precipitation. Rainfall events

during this season are few (10-15 at most), short (1-2 days) and irregular in time. Precipita-

tion is brought by mid-latitude weather systems that formed along the North Atlantic storm

track and subsequently drifted east under the influence of prevailing westerlies. Some storms

also originate from the Mediterranean, particularly during fall and spring when the land-sea

temperature contrast and topography favor condensation of sea moisture exports over land.

The Rif and Atlas Range act as a barrier, lifting air masses, condensing water vapor, and

generating precipitation.

Along the border of the plains, the northern slopes of the Atlas similarly receive much of their

precipitation during winter, although they also experience non-negligible summer rainfall due

to local-scale convection triggered by surface heating. Above 2000m altitude, sub-zero tem-

peratures are common from November to March, and consequently a significant fraction of

winter precipitation falls as snow. Persistent snowpack can regularly be seen near the highest

peaks (3500-4000m) between December and February. Annual precipitation is highest in the

Rif, the small (∼1500m) mountain chain located along Morocco’s Mediterranean coast (Fig.

2-2), where it can reach 1000mm. It generally decreases as one goes south and inland, reaching
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a low of about 200mm in the arid plains near Marrakech (Fig. 2-2).

Figure 2-1: Topography of Morocco. The five major mountain ranges are indicated (capital
letters), as well as the country’s three largest watersheds: the Sebou, Loukkos and Oum-Er-
Rbia. Data is from STRM90 [135], regridded at 0.5◦ resolution.
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The mountainous interior (Anti-Atlas, southern High Atlas and Saharan Atlas, Fig. 2-

1), above 1000m altitude, is characterized by a much more continental climate, of mainly

cold desert and cold semi-arid types, with local patches of alpine climate at high elevations.

Winter temperatures ordinarily range from 0-10◦C, and summer temperatures from 25-35◦C

[32]. Annual precipitation is low, generally 150-300mm, and about equally distributed among

all months outside the dry summer months (June-August) (Fig. 2-2). A slight peak around

March-May can sometimes be seen, typically associated with springtime tropical moisture

exports interacting with the topography [27]. Finally, all regions south of the Atlas Range

are part of the Sahara Desert. Precipitation is almost non-existent; the rare rainfall events,

though, tend to be intense, and regularly trigger flash floods, evidenced by the large and dry

rivers beds that adorn the landscape. Overall, outside a few oases and the coastal strip, the

region is inhospitable and very sparsely inhabited.

In addition to its strong spatial variability, precipitation is also highly variable in time, at

the seasonal, annual, decadal and multi-decadal timescales [147]. The strong seasonal precip-

itation cycle owes its existence to Morocco’s geographical position, between the subtropical

pressure high to the south and the mid-latitude storm track to the north, whose positions

evolve over the year. During winter, the North Atlantic storm track reaches its southermost

position and westerlies are strongest, which allows mid-latitude storms to reach Morocco. Dur-

ing spring, it recedes polewards as the subtropical high moves northeastwards, bringing strong

descent, and warm and dry conditions over Morocco that culminate in summer. Beginning

in the fall, the cycle starts again. In a given season, several consecutive dry months are not

uncommon outside the wettest regions to the north, and consequently short-term seasonal

lack of moisture is also frequent. The combination of scarce vegetation, complex terrain and

intense, short-term precipitation episodes make floods very common in Morocco, and in fact

they rank as the second environmental disaster after droughts in terms of economic damage

[171].

Precipitation varies also substantially from year to year and across decades. The coefficient

of variation of annual precipitation ranges from 20-25% along the Atlantic coastline to more

than 50% in the most arid regions (Fig. 2-3). In most areas, wet years typically receive twice

as much precipitation as during an average dry year. Droughts are very common, with on
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Figure 2-2: Annual precipitation (shaded contours, from TRMM 3B43 V7 [126], 1998-2018)
and annual precipitation cycles in major Moroccan cities (from CRU TS4.04 [108]). Boxes
in the annual cycles include 50% of values, and whiskers 95%. Monthly means are shown by
the solid blue lines; horizontal black lines indicate monthly medians. Mean annual totals are
shown in the top right-hand corners of station plots.

average one year per decade with less than 40% of mean rainfall. In fact, long periods of

droughts, lasting several years and affecting wide areas, occur regularly. Wet and dry decades

alternate in the observed record. The 1960s were a period of exceptionally wet conditions,

while the beginning and the end of the 1980s, the mid-1990s and the 2000s have been dry.
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The most severe drought occurred from 1980 to 1985, when rainfall deficits averaged from 20

to 50% depending on the years and areas (with extremes of 85% between 1982 and 1984).

These droughts affected wide areas and lasted for several years, putting considerable stress

over the country’s water resources and taking their toll on agricultural production. For the

last decade, precipitation has been somewhat on the low side, despite two wetter-than-average

seasons (2011-2012 and 2017-2018).
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Data: CRU TS4 v2 (1901−2017)

Figure 2-3: Left : Annual (Sep-Aug) precipitation over Morocco’s northwestern plains, 1901-
2015 (station-based data from CRU TS4 [108]). Right : Coefficient of variation (CV) of annual
precipitation (satellite-based data from TRMM 3B43 V7 [126]).

2.2.2 Inter-annual variability of precipitation and the North Atlantic

Oscillation

The large inter-annual variability in winter precipitation is associated with the North Atlantic

Oscillation (NAO), the dominant mode of seasonal atmospheric variability over the North

Atlantic [128, 129]. The NAO emerges from variations in the relative strength of the two sea-

level pressure (SLP) poles characteristic of the North Atlantic circulation: the Azores High, a

large region of relatively high pressure centered over the Azores islands, and the Icelandic Low,

one of low pressure centered over Iceland (Fig. 2-4). Between the two, steep SLP gradients

49

��������������������������		�	��	�������������������
���




correspond to the strong westerlies of the storm track, whose intensity increases with latitude to

peak around 55-60◦N. Winter storms originate from baroclinic instability in the northwestern

Atlantic, and their subsequent strength and trajectory are therefore mainly driven by the

large-scale pressure pattern. As the relative strength of the two pressure poles evolves, meaning

that atmospheric mass is alternately redistributed between the Arctic and subtropical Atlantic

areas, so does the intensity and position of the storm track. These dynamics are characterized

by the NAO index, usually defined as either the difference in SLP between Reykjavík (Iceland)

and Ponta Delgada (Azores), or as the projection of the North Atlantic SLP field onto its first

Empirical Orthogonal Function (EOF) [129] (Fig. 2-4).

Figure 2-4: Regression slope of North Atlantic DJF SLP onto its first principal component
(top) and time series of this first principal component from 1901 to 2016 (bottom). Data from
ERA20C [197].
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The NAO is strongly linked to patterns of winter temperature, precipitation and stormi-

ness over the whole North Atlantic sector [128], including northern Africa (Fig. 2-5) [147].

The amplitude and timescale of NAO variations are also large enough to impact weather over

several years in a row [136]. In its positive phase, by convention when the equator-to-pole SLP

gradient is larger than average, the storm track is strengthened and deflected polewards, lead-

ing to wet, mild and windy conditions north of the 45◦N parallel, and dry and cool weather to

its south [262]. In its negative phase, the subtropical high is considerably weaker, allowing for

a more southward propagation of North Atlantic storms towards the Mediterranean Sea and

northwestern Africa, which experience higher-than-average precipitation and milder tempera-

tures due to enhanced advection of oceanic heat. At the same time, Northern Europe is drier

and colder. The influence of the NAO over Morocco, along much of southern Europe, is limited

to the extended winter (October-April), when the storm track reaches its southermost position

(Fig. 2-6). By contrast, during summer, the impact of the NAO is essentially felt over North-

ern and Central Europe [22]. The regions at each limit of the storm track distribution are the

most impacted by the NAO: Morocco and the Iberia Peninsula to the south, and Scotland and

Norway to the north. In Morocco, NAO variability accounts for half of December-to-January

precipitation variance, about the same as for the southern half of the Iberian Peninsula (Fig.

2-6). Although precipitation anomalies associated with unit change in the NAO are larger

at the northern edge of the stormtrack (about 150-200mm, against 50-100mm to the south),

high latitudes receive much more precipitation on average (700-800mm in winter against 150-

200mm at 30-35◦). Consequently, regions to the south, including Morocco, are much more

sensitive to NAO variability relative to their average precipitation.

The NAO has been shown to be a natural mode of variability of the climate of the northern

hemisphere and the most prominent atmospheric pattern over the middle and high latitudes,

particularly from late fall to early spring (November to April) [17, 150]. The NAO is believed

to owe its existence not to coupled ocean-atmosphere interactions, but to internal, nonlinear

dynamics intrinsic to the atmosphere [244], as even atmospheric models with no orography nor

land-sea contrasts run with constant ocean forcing have displayed the emergence of patterns

of variability very similar to the NAO [24, 129]. Still, ocean forcing is thought to drive much

of the variability in NAO dynamics at the seasonal, inter-annual and decadal scales ([129, 191,
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219], and further discussion in section 2.2.3). The NAO indeed fluctuates on a wide range of

timescales, from days to decades, and extended periods when one phase dominates are common.

Large changes can occur from one winter to the next, and there is also a considerable amount

of variability within a given winter season. The spectral analysis of winter NAO reveals a

rather red spectrum: power increases with period, with most of the variability concentrated

at timescales of two weeks and above [236]. Many winters are not dominated by one regime

in particular. In a single season, the NAO index typically oscillates between positive and

negative phases, generally on a timescale of 7-20 days [257]. Such anomalies last long enough

to potentially impact precipitation, as their length roughly corresponds to the response time of

the atmosphere. On longer timescales, strong inter-annual and -decadal variability is evident

(Fig. 2-4). Positive winter NAO tended to prevail from the early 1900s until about 1930, when

the series reverted to more negative values up to the 1960s. The winter of 1979 witnessed an

abrupt transition back to a positive phase which persisted for most of the following 15 years.

Since then, the NAO reverted to a regime of shorter oscillations, although fewer negative

regime months have been observed recently [233].

Figure 2-5: Idealized mean SLP, wind and storm track position during a positive (left) or neg-
ative (right) NAO phase. [Credits www.ldeo.columbia.edu/res/pi/NAO/, C⃝ Martin Visbeck]
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Figure 2-6: Top: Pearson’s correlation coefficient of DJF NAO and concurrent Euro-
pean/Mediterranean precipitation (data from CRU TS4 [108]). Dots indicate significant corre-
lation at 1%. Bottom: Monthly correlation of northwestern Moroccan precipitation and NAO
index (left) and DJF northwestern Moroccan precipitation against concurrent NAO index,
1901-2015 (right).
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2.2.3 Predictability of seasonal precipitation

In spite of the major impacts of precipitation variability on agriculture and the economy, the

predictability of Moroccan precipitation at seasonal time scales has received extremely lim-

ited attention, and in practice, only short-term dynamical forecasts are available to water

managers. A number of studies, however, have focused on the larger issue of European pre-

cipitation predictability, and in particular the predictability of the NAO given its substantial

impact on European weather.

Traditionally, seasonal climate forecasting has either relied on numerical weather models

(NWM) or on statistical models. The statistical (or empirical) approach relies on the iden-

tification of a predictand (or target) variable – in this case, seasonal precipitation or NAO –

and of predictor variables, to which a statistical model is fitted; the model is then evaluated

and used to make future predictions. In this approach, physics usually inform the choice of

predictors, but the physical links between predictors and predictands are not made explicit,

though they are often assessed a posteriori. NWMs, on the other hand, explicitly solve the

equations governing atmospheric flow. Simulations initialized with observed fields at the time

of the forecast are run until the end of the desired forecast horizon, and forecasts are directly

derived from model output. In this approach, large ensembles of runs are typically required

to address the uncertainty on initial conditions and its impacts on atmospheric predictability.

Thanks to improvements in computational efficiency, NWMs have become dominant for short-

to medium term forecasts, from one to about 10 days. Statistical forecasts, on the other hand,

still find use in long-term forecasts, also known as season-to-season forecasts (S2S) or simply

seasonal forecasts, with lead times considerably longer than the limit of deterministic atmo-

spheric predictability [267].

A number of studies have attempted to identify large-scale climate drivers relevant for sea-

sonal predictability of precipitation in Europe and the Mediterranean Basin. In particu-

lar, Sea-Surface Temperatures (SSTs) have attracted most of the attention since they are

a significant driver of atmospheric motion at seasonal timescales. Empirical connections of

winter and spring Western Mediterranean precipitation to North Atlantic and tropical Pa-

cific SSTs several months ahead were identified early on and confirmed by many authors

54

��������������������������		�	��	�������������������
���




[283, 63, 210, 211, 158, 159, 79]. Similarly, the El Niño Southern Oscillation (ENSO) phe-

nomenon has also been found to impact European precipitation during winter and spring

[156, 198], possibly through the excitation of planetary waves [228]. The link between SSTs

and the NAO has also been explored. Much of the variability in inter-annual to inter-decadal

winter NAO is indeed believed to be related to North Atlantic Sea-Surface Temperature (SST)

patterns and Arctic sea-ice [20, 149, 214, 24]. Connections to other oceans basins have been

proposed as well, such as to the tropical Atlantic [209, 50, 129] and tropical Indian and Pa-

cific oceans [119, 240]. Recent modeling also suggests that the NAO responds to slow changes

(decadal and longer) in global ocean temperatures, and more particularly to changes in tropical

and equatorial regions. SSTs are indeed a major driver of atmospheric circulation at seasonal

to multidecadal timescales, because of their effect on the atmospheric energy and moisture bud-

get, thus paving the way for season-to-season weather forecasts [233]. The winter NAO has also

been linked to variability of the stratospheric polar vortex via downward coupling of the cir-

culation and planetary waves[193, 15, 184], sea-ice cover in the Barents Sea [214, 89, 245, 263]

and anomalies in Eurasian snow cover extent (SCE) [45, 25, 220, 200]. Sea-ice and SCE both

impact the surface radiative balance, with potential feedback on the hemispheric circulation.

Numerical modeling experiments forced with varying Eurasian SCE indeed reproduced an at-

mospheric NAO response in winter similar to the observations [44, 82, 190]. Increased snow

cover over Eurasia in the fall would result in surface cooling that favors the development of a

cold and dense mass of air over Siberia which, when it spreads out (Arctic outbreaks), brings

cold and dry air to Europe and North America. More than snow cover itself, however, the rate

of its increase in autumn appears to correlate even more strongly with a westward expansion

of the Siberian High over Europe and the North Atlantic, thereby influencing the evolution of

the wintertime atmospheric circulation [46].

When fitted at the global scale with SSTs as predictors, empirical models have generally

turned out to have mediocre skill over the Mediterranean region [18, 70]. Brands et al. (2012)

attempted to predict European winter precipitation based on Eurasian snow cover data only.

Significant skill was found for Norway to the north and the Iberian Peninsula and Morocco

to the south; still, only 15% of the variance in northern Moroccan precipitation could be

explained, and 20% at best for a few grid points [33]. More recently, Totz et al. (2017)
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developed a clustering-based method in which recurring spatial patterns of European winter

precipitation were identified, and associated with composite patterns in the predictor fields

[245]. As predictors, they selected variables believed to influence either precipitation directly

or through the NAO: North Atlantic and Mediterranean SSTs, Eurasian snow extent and

Arctic sea ice. The methodology yielded reasonable skill over Europe, and even correlations

up to 0.65 over Northern Morocco. Still, their results over Morocco are questionable, because

both significant positive and negative correlations are found over the northwestern Moroccan

plain, whereas a uniform correlation sign would be expected given the region’s homogeneous

weather during winter [147].

Similarly, empirical analyses suggest a limited though significant predictability of winter NAO

based on SST anomalies as early as the preceding spring and up to November [63, 49, 212,

219, 81], especially west of the British Isles [137, 219] and off the coast of Newfoundland

[204, 214, 212]. Models and regression analyses suggest however that the oceanic influence

on North Atlantic climate is nonstationary and has varied, sometimes significantly, over the

last two centuries [119, 240, 92]. Prediction skill of winter NAO regressed on North Atlantic

SSTs is notably consistently lower for the first half of the 20th century, as well as during the

1960s and 1980s, but higher in the 1970s and 1990s [219]. Simple statistical forecast models

based on lagged SST predictors have demonstrated significant skill in predicting winter NAO

(r2 ≈ 0.3 − 0.4) at a lead time of 0-1 month [219]. Up to 58% of interannual winter NAO

variability may be predictable when including all suspected predictors [263], although such

analyses can only be limited to the recent decades (1980-present), mainly because of the

availability of satellite data [81]. Stratospheric data are also of questionable validity before

then. Models are consequently trained on short periods, with high risk of over-fitting.

Improvements in computational efficiency have fostered attention to dynamical NAO and

precipitation forecasts in recent years. The poor skill of global circulation models in predicting

seasonal European and Mediterranean precipitation, especially during winter and spring, has

been documented in a number of studies [60, 266, 177]. We illustrate here with an example

of hindcast skill in five models part of the North American Multimodel Ensemble (NMME:

CMC1-CanCM3, CMC2-CanCM4, NCAR-CESM1, NCAR-CCSM4 and GFDL-FLORB-01)1.

1Data is available at https://www.earthsystemgrid.org/search.html?Project=NMME
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Figure 2-7: Spearman correlation coefficient between NMME multi-model mean seasonal pre-
cipitation forecasts and satellite-based (GPCP) observed precipitation, 1982-2010, for (top)
December-January-February and (bottom) February-March-April.

NMME is a project of seasonal forecasting intercomparison of coupled ocean-atmosphere mod-

els. Retrospective forecasts are issued on the fifteenth day of each month. Figure 2-7 shows

model forecast skill for two three-month periods, issued fifteen days into the period. Forecast

skill for Morocco and, more generally, the Mediterranean region, is poor for both periods,

with generally less than 10% of explained variance. By contrast, potential for predicting

multi-decadal European precipitation tendencies has emerged in coupled dynamical models.

Simpson et al. (2019) found that model skill in representing low-frequency SST influence on

the atmosphere during March led to enhanced predictability of winter precipitation mulit-
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decadal variability in western Europe [232], and predicted average March precipitation for the

upcoming decade based on a 40-member ensemble of climate runs.
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Figure 2-8: Left : Observed (blue) and predicted (red) DJF NAO, using the Met Office Decadal
Climate Prediction System model, 1982-2016 (from Dunstone et al. [69]). Right : Potential
predictability of DJF Moroccan precipitation against that of the concurrent NAO, with results
from two different NAO forecasts (one dynamical [69] and one statistical [263]).

Dynamical models have generally showed better skill at forecasting large-scale North At-

lantic atmospheric patterns, notably the NAO, with useful implications for seasonal precipita-

tion. Large ensembles of winter coupled simulations have shown satisfying skill in predicting

inter-annual NAO variability [221, 69], though at high computational cost (40-member ensem-

ble in Dunstone et al. (2016) [69], for instance). Correlations of r ≈ 0.6 have been found for

DJF NAO forecasts at 1-month lead times (November 1st). To see how this could translate

into precipitation forecats, let us assume a simple NAO-precipitation model:

⎧
⎨

⎩
NAO = X + ϵ

p = αNAO+ η
(2.1)

where the NAO is equal to the sum of its predictable part X and independent random noise

ϵ ∼ N (0, σ2
ϵ ), and precipitation p is a linear function of the NAO with a random residual

η ∼ N (0, σ2
η). In this idealized case, the potential predictability of the NAO is given by
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ρ2X =
σ2
X

σ2
NAO

, and that of precipitation is

ρ2p =
α2σ2

NAO

σ2
p

= ρ2X
α2σ2

X

σ2
p

(2.2)

A typical value for Morocco is α ≈ −0.75 (Fig. 2-6, bottom), which yields ρ2p ≈ 0.56ρ2X

assuming scaled variables. Therefore, the best that could be achieved from current NAO

forecasts, assuming no uncertainty on α, is roughly 30% of explained variance in winter pre-

cipitation (Fig. 2-8). In practice, the value is lower when cross-validation is implemented (see

Chapter 3). In any case, accurate dynamical NAO forecasts remain a challenge because many

of the physical processes impacting the NAO remain unknown or are not well understood

[221, 233].

2.3 Water resources and management

The scarcity, variability and unpredictability of precipitation therefore create great challenges

for water management in Morocco. Because the resources are so limited and fickle, water

management has always been a top priority for the country. The rejuvenation of Morocco

after its independence in 1956 involved large infrastructure projects to develop agriculture and

improve water management and water use efficiency. Since then, the country has withstood

several severe droughts, but demand for water is now rapidly approaching the amount that is

sustainably available (section 2.4).

2.3.1 Water cycle and available resources

A simplified water cycle for Morocco is shown on Figure 2-9. Of the 140km3 of precipitation

that fall on average on Morocco every year, the vast majority (118km3, or 84%) return directly

to the atmosphere through evapotranspiration before it can be captured and utilized. However,

part of this total volume is still used productively in rainfed agriculture, particularly. This

leaves only 22km3 of potential resource, which translates into about 600m3/capita, well below
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Figure 2-9: Simplified water cycle of Morocco; data averaged over the 2008-2018 period.
Source: Direction de la Recherche et de la Planification de l’Eau, Rabat.

the generally accepted scarcity threshold of 1000m3/capita/year. Accounting for productive

evapotranspiration would naturally increase that amount, but to an extent that is yet to be

quantified for Morocco. Roughly 80% of these 22km3 are captured to be used. The rest is

lost, typically in basins with no or little water infrastructure (like the Drâa catchment south

of the Atlas). Surface water accounts for three-quarters (≈ 13km3) of the mobilized resource,

with the rest being groundwater. Groundwater is particularly critical south of the Atlas,

where surface resources are scarce, but is also heavily relied on in many irrigated agricultural
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plains to the northwest. 3.5-5km3 of mobilized resources are lost every year, through direct

evaporation (from dams or irrigation canals), river discharge into the sea, as well as runoff

that goes through existing infrastructure but that is not captured (dam overflow, etc.). A

further 0.5km3 from desalination and water reuse ("gray water") complement the renewable

resource. In total, satisfied consumptive water demand amounts to 13-15.5km3, i.e. 360-430m3

per inhabitant.

Water availability varies across space, following the non-uniform distribution of precipita-

tion. 15% of Morocco’s land surface, essentially the northern tip of the country, receives about

50% of the precipitation and accounts for 60% of river discharge. All of Morocco’s major rivers

are located in its northwestern portion (Fig. 2-1). They begin their course in the comparatively

wetter Atlas and Rif, and flow across the plains to the Atlantic Ocean and Mediterranean. The

Sebou river is the country’s longest, draining an area of around 35000km2 between the Rif and

Middle Atlas. Its renewable water resources are estimated at about 5.5km3 (4.5km3 of surface

runoff and 1km3 of groundwater), of which 3.5km3 are effectively used (25% of the country’s

total use). The second longest, the Oum-Er-Rbia river, drains a similar area that includes

much of the High Atlas. 2.9km3, out of its 3.3km3 annual runoff and 0.5km3 groundwater

infiltration, are captured (20% of national total). At the northern tip of the country, several

smaller catchments, including the Loukkos and Mediterranean coastal basins, account in all

for 2.5km3 of discharge and 1km3 of groundwater, of which 2.2km3 are used (15% of national

total). Also in keeping with precipitation, water resources vary in time as well, with wide

fluctuations around the 20km3 average (Fig. 2-10). The driest year of the last few decades

was 1992, when only 3km3 were utilized, when in 1962, that figure reached 48km3. Seasons

just one or two years apart can also see wide differences, for instance 8km3 in 2007 and 42km3

in 2009.

2.3.2 Water use and infrastructure

To mobilize such water volumes under this large variability, the country relies on an extensive

network of 135 dams, with a combined withholding capacity of 17.5km3, as well as numerous

water transfer systems between dams, and from dams to irrigated areas. The largest dam
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Figure 2-10: Annual water resources (km3) in Morocco, 1945-2009. Source: Direction de la
Recherche et de la Planification de l’Eau, Rabat. A linear regression fit is shown by the dashed
line (p-value: 0.07).

is Al Wahda, in the Sebou watershed, with a capacity of 3km3, and the second largest is Al

Massira, along the Oum-Er-Rbia, with its 2.7km3 capacity. Most of the water use (88%) is

directed to agriculture, with the rest going to industry (4%) and cities (8%). Water is also put

to non-consumptive uses: most large dams are equipped with hydroelectric turbines (1800MW

of total installed capacity) that produce electricity each time water is discharged. Since the

1960s, Morocco has pushed for the development of irrigation, and today about 1.5 million

hectares are irrigated in the country (16% of total arable land) [134], close to the official

estimated potential of 1.65 million hectares. Two-thirds of this surface was developed and is

managed by the government, in what are called "irrigated perimeters". There are 9 major

irrigated perimeters in the country, accounting for almost 900000 hectares, and associated

with extensive water collection and delivery infrastructure. The rest is fractioned into more

than 100 small-scale irrigated areas, typically located farther away from dams and depending

comparatively more on local groundwater pumping. With only 16% of the arable surface,

irrigation accounts for 45% of added value in agriculture on average, a fraction that can reach

70% in dry years, and 75% of agricultural exports [5]. Revenue per hectare is four to eight

times higher than for rainfed crops.
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Figure 2-11: Average cereal yield (t/ha) as

a function of total annual precipitation in

the Oum-Er-Rbia watershed management area,

2000-2013 seasons [data from Dr. Mohamed El

Gharous].

Yields in rainfed agriculture are indeed

overall quite low and highly dependent on

the timing and amount of seasonal rainfall

[76, 134], particularly for cereals (Fig. 2-

11). As an example, during the 1994-1995

cropping season, drought was so severe that

the precipitation deficit reached -60% in the

north and -80% in the south. On average,

in the northwestern plains, cumulative rain-

fall was 198mm for the 1994-1995 season and

591mm for the following season. Cereal pro-

duction in 1994-1995 totaled a mere 1.73

million tonnes (average yield: 479 kg/ha),

compared to 9.8 million tonnes in 1995-1996

(1730 kg/ha) [14]. More recently, the excep-

tional 2017-2018 season saw a record 10.2 mil-

lion tonnes of cereal production, which declined by 49% to 5.2 million tonnes in 2018-2019

following large rainfall deficits, and is projected to decline even further to 4 million tonnes for

the dry 2019-2020 season.

Still, even during good years, cereal yields are only 25-30% of what they are in Europe, notably

because of low technology adoption and low fertilizer use. National wheat yields have slowly

increased, from 0.7 tonnes in the 1940s to 1.6 tonnes per hectare in the 2000s [14], but discrep-

ancies between regions remain high: 0.62 tonnes/ha in the Safi province, up to 2 tonnes/ha

in the Kenitra province. Within provinces, year-to-year variations are also significant, with

coefficients of variation between 0.34 (Beni Mellal province) and 0.67 (Settat province) [134].

Consequently, Morocco imports about a third of its cereal consumption, only down to a quar-

ter in good years (25% in 2008-2009 when production reached a record of 10.2 million tonnes).

By 2010, most irrigated fields (70%) were still watered by furrow irrigation, with the remain-

der evenly split between irrigation by aspersion and localized irrigation (like drip irrigation).

The share of the latter has been growing fast over the last decade, under the impulsion of the
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"Green Morocco Plan". Launched in 2007, this plan aims to transform Morocco’s agriculture

system to improve practices, yield and water use efficiency, lower overall water use and and

make it more resilient to drought and climate change. Drip irrigation has been particularly

encouraged, since its efficiency is vastly higher than that of furrow irrigation. Currently, the

efficiency of the whole irrigation system (i.e., including losses before the water reaches the

field) is estimated at about 40-45%, mainly because of evaporation in the open-air canals and

low efficiency of furrow irrigation. Water is illegally taken from many canals as well . Still,

part of the "losses" definitely replenish aquifers from which groundwater is also extracted for

irrigation, though the volume this represents is not precisely known.

2.3.3 Water management

When the development of water infrastructure accelerated in the 1960s, irrigation and overall

water use were meant to be managed locally, at the level of each irrigation scheme. The

government limited its action to enforcing controlled cropping patterns that were part of a

national production strategy (notably the cultivation of sugar beets). The decade-long drought

of the 1980s and early 1990s, however, caused widespread reductions in water availability, at

a time of growing demand, compelling the Moroccan government to adopt a more integrated

and regulatory framework. Passed in 1995, the Water Law defined rules for the sustainable

use of water and established the institutions in charge of their enforcement. A network of nine

watershed agencies, under the responsibility of the Ministry of Public Works, was created, one

for each of Morocco’s main river basins (Sebou, Oum-Er-Rbia, Moulouya, Tensift, Bouregreg,

Souss-Massa, Loukkos, Guir and Sahara area). Their purpose is to monitor, develop and

allocate water resources between competing users within each basin, based on a management

plan (PDAIRE, Plan Directeur d’Aménagement Intégrée des Ressources en Eau, or Master

Plan for the Integrated Management of Water Resources) that is revised every 5 years. They

maintain observation networks to assess the state of water resources, in terms of both volume

and quality.

Irrigated areas were also consolidated into official irrigated perimeters, centrally managed by

Regional Offices for Agricultural Development (Office Régionaux de Mise en Valeur Agricole,
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ORMVA), tasked with planning agricultural development and giving farmers the resources to

achieve production goals and to manage water resources at the scheme scale. In practice, they

provide credit, selected seeds, fertilizer and farm equipment to farmers, and manage irrigation

water which they supply to farmers for a fee fixed by the government. That money pays for

infrastructure maintenance, and a fraction goes to the corresponding watershed agency. The

price of water, however, is very small, around 0.5 USD cents per cubic meter – by comparison,

French farmers pay around 7 cents per cubic meter, while American farmers can pay anywhere

from 0.5 to 10 cents.

Water is managed at the basin scale, on an annual (September-August) basis, by watershed

agencies in coordination with the government and regional stakeholders. A delicate balance

must be struck between all the users: agriculture – represented by the regional agricultural

offices; industry; cities, represented by the Office National de l’Eau Potable (National Office

for Potable Water, ONEP), and the Office National de l’Électricité, the national electricity

producer. Water allocations between the different consumers are decided in late June-early

July for the upcoming hydrological year. First, each user states their demand, within bounds

defined by the management plan. These demands are expressed at the level of each dam,

and not aggregated at the basin scale. Then, starting with what is available in dams at that

time, a simple water balance is applied to each dam, assuming fixed losses by evaporation and

infiltration and a river discharge level that is exceeded, on average, in 4 out of every 5 years,

based on historical records. In other words, the risk of not meeting the demand is constrained

to only 20%, following government regulations. The outcome is an estimated storage for each

dam at the end of the upcoming year, from which user demands are then subtracted. If the

levels thus calculated are below 25% of dam capacity, user allocations are then reduced to

bring dam storage at the end of the year to that 25% level. After very dry years, agencies

will occasionally accept to go below that level, but must seek special authorization to do so.

Municipal water supply has priority (its demand is systematically met), followed by industry.

Agriculture is therefore the main variable of adjustment if water supply is low. As a result from

chronic droughts and growth in water demand from other users, agricultural water allocations

are always substantially less than requested amounts, on average by about 35%, but as much

as 70% in very dry years.
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Water allocation decisions are revised every term (September, December and March), to take

into account actual precipitation and dam inflows, primarily to avoid excessive crop losses.

However, once a decision is made, the Agency will stick to it until the next revision and

will deliver all promised water in time. If the year ends up being too dry, water restrictions

will typically be postponed to the following year. Still, possibilities for interannual water

management are quite limited, due to the overall scarcity of water. Interannual strategies rely

mostly on the largest dams, built to help the country withstand large droughts by storing as

much water as possible during wet years.

While seasonal water amounts are fixed, the schedule and volumes of delivery to the plots are

generally more flexible. Water releases are determined by the Agency on a 3-day to weekly

basis, based on the demand schedule devised by agricultural offices in accordance with annual

water allocations. The short time horizon allows last-minute cancellations due to unexpected

rain, for instance. Municipal water systems manage their own supply and inform the agency

of their withdrawals every week. Apart from upstream dams intended for hydroelectricity

production and not water storage, hydroelectric production is conditioned by the water release

schedule, in which electricity demand plays no role. At the field level, each farmer is given

an entitlement for a specific water volume, based on the size of their field and the crops

they pledged to grow. Water deliveries are scheduled in advance, and farmers cannot transfer

unconsumed water until a subsequent delivery, so most of them take all the water they can get

at each turn. In case of unexpected water scarcity during the season, priority will be given to

specific crops – usually trees to help them survive droughts – and specific locations – high-yield

fields, for instance. Annual crops in marginally productive areas are consequently regularly

abandonned in the course of the growing season.

Groundwater management is decoupled from surface water management. Until recently,

few regulations existed to limit pumping from aquifers, but the severe overpumping of the last

few decades (see Section 2.4) prompted watersheds agencies to devise and enforce restrictions

on aquifer withdrawals. Today, most groundwater is pumped by individual farmers who, while

they do not need to pay anything for that water, must still request permission for drilling from

the watershed agencies, and respect the cap on withdrawals imposed on them if the permis-

sion is granted. In addition to direct measurement of piezometric levels, watershed agencies
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increasingly rely on numerical simulations to monitor the health of groundwater resources and

determine whether to hand out drilling permits. Yet, much remains unknown about aquifer

recharge, either natural or from irrigation losses; in addition, unlawful wells are plenty and

many farmers pump more than what they are supposed to, because regulations are still only

partly enforced.

2.4 Trends in water availability: past, present and future

2.4.1 Recent trends

While it may seem from Fig. 2-9 that large water supplies are still untapped, in practice, water

consumption in Morocco is very close to the amount that can be reasonably captured for human

use. The remaining unmobilized water resources are generally difficult to access; they can be

located in remote or undeveloped regions where demand is low and capture and transportation

costs would be high (high mountain aquifers, for instance), or they are simply not captured,

either due to the absence of infrastructure, or to the failure of existing infrastructure to capture

them. Dam overflows during flash floods are not uncommon south of the Atlas, and even in the

comparatively wetter plains to the north, mild flash floods leading to water losses are common.

As a result, water resources are overexploited in much of Morocco outside the very north. In

addition, water resources are inequitably distributed in space; demand in some places cannot

be satisfied while other regions are in surplus, as is regularly the case of northern Morocco.

Water is not easy to transport, and as a consequence the surpluses can be lost.

Recent trends highlight how critical Morocco’s water situation has become. Due to economic

development and population growth, demand for water has grown significantly over the last

few decades, from 10.9km3 in 1990 [4] to 14.3km3 today (Fig. 2-9). The development of

irrigation in particular has strongly contributed to this trend: from 215000 hectares in 1960,

the area equipped for irrigation in Morocco has increased to 750000 hectares around 1990 and

to close to 1.5 million hectares today [4]. Advancements in irrigation efficiency, in particular

the push to develop drip irrigation, have failed to fully compensate for the increase in irrigated
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surfaces. In parallel, runoff has generally been on the decline since the middle of the 20th

century (Fig. 2-10), by about 6% per decade between 1945 and 2009. One should keep in

mind however that the magnitude of inter-annual variability makes the significance of such

trends always challenging. If we start the trend analysis in 1980 for instance, at the beginning

of a decadal drought, a significant upward trend in runoff is detected.

Figure 2-12: Trends in wet season (November-April) precipitation across available stations in
Morocco (see Chapter 5 for details on station data.

Overall, water availability per capita has dropped from 1900m3 in 1970 to about 600m3

today [123]. By some estimates, Morocco’s water demand could even be as high as 3km3

above the supply [114], but uncertainties remain high and official data (Fig. 2-9) indicate

that supply and demand are about equal. What is certain, however, is that Morocco’s water

surplus has been decreasing fast, all the more so in fact because the national water strategy

was largely devised in the 1960s, a time of historically high precipitation (Fig. 2-3). As a

consequence, much of the original infrastructure (dams and irrigation equipment) was sized

for water volumes that have never been reached again since. For example, it was recently

estimated by the Moroccan Ministry of Agriculture that actual utilizable volumes were about

a third lower across Morocco’s major basins than what was originally planned for in the 1960s

and early 1970s. A critical point occurred in the 1980s, as the country went through a major,
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decade-long drought which took a heavy toll on agriculture and the economy. For several years

in a row, precipitation was near its lowest levels on record (Fig. 2-3). The large drought of the

1980s-1990s was associated with a persistent positive winter NAO phase (Fig. 2-4) that caused

declines in precipitation over much of Spain and Portugal as well. Since then, precipitation has

recovered, but only partly: station data indicate a tendency to long-term precipitation decline

over the last few decades over most of Morocco [237] (Fig. 2-12). About 58% of stations have

negative trends. Most trends (75%) are not significant, which is unsurprising in a region with

such high inter-annual variability (low signal-to-noise ratio), but of the 13 stations where they

are significant, 10 have experienced decreases in precipitation. On average, a decline of about

1% per decade is observed across stations. Similarly, discharge observations point towards

declining runoff, and the frequency of dry years may be increasing as well [51].

As is often the case in semi-arid regions, the lack of surface water supply has been compensated

by aquifer withdrawals. Since the 1980s, many aquifer levels have dropped by 1.5-3m per year

[255] (Fig. 2-13), and the depletion rate has even increased since the late 1990s even though

the country transitioned out of the drought into more average conditions. Today, an estimated

0.85km3 of unsustainable groundwater is extracted and consumed every year [123].

2.4.2 Climate change and the "Mediterranean Hotspot"

The observed drying in Morocco has occurred in the context of a widespread regional precip-

itation decline across the Mediterranean Basin. Station-based observations show a consistent

drying signal along much of the Mediterranean shoreline, particularly south of 40◦N (Fig. 2-

14-a) [118]. This pattern is also present, although with smaller magnitude, in Global Climate

Model (GCM) simulations forced with observed greenhouse gas concentrations (Fig. 2-14-b).

The large inter-annual and decadal variability in winter precipitation in the Mediterranean

makes it difficult to assess the significance of observed trends, but evidence points to the exis-

tence a forced long-term drying signal superimposed on the decadal variability during the last

few decades [118, 142]. In addition, models robustly project that these trends will continue

into the future [101, 278, 142, 225], to a point where 40% of annual precipitation could be lost
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Figure 2-13: Groundwater level (in meters below surface) in four of Morocco’s major aquifers
(Saiss in the Sebou basin, Tadla in the Oum-Er-Rbia basin, Haouz in the Tensift basin around
Marrakech and Souss in the Drâa catchment on the southern slopes of the High Atlas). Data
from Hssaisoune et al. (2020) [123].

in Morocco by the end of the 21st century (Fig. 2-15-a) [133]. The Mediterranean Basin as

a whole has consequently stood out in successive generations of models as a major hotpot of

climate change [99, 59] (Fig. 2-15).

The robustness of the drying signal across GCMs, and its similarity with observations,

suggests that models may be generally correct in their precipitation projections in this region.

Still, the mechanisms responsible for such high inter-model agreement remain, for the most

part, unclear. Just because models strongly agree in this region does not mean we must

necessarily have high confidence in their projections. Sound physical explanations are needed

to complement model results. Given the economic, cultural and geopolitical importance of

the region, many studies have attempted to diagnose projected Mediterranean trends and

understand their origin [168, 195, 65, 225, 278, 279, 226], but so far a clear and detailed picture

has not emerged. The Mediterranean Basin is a unique region due to its geographical position

which brings it under the influence of mid-latitude westerlies during winter, while large-scale

descent forced by the Hadley circulation and Indian monsoon prevails during summer [26]. The

variabiility between these two regimes, coupled with the influence of the Mediterranean Sea
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Figure 2-14: (a-b) 1950-2015 trends in November-to-April precipitation in the Mediterranean
region in (a) GPCC and (b) CMIP5 GCMs (1950-2005: historical scenario; 2005-2015: RCP8.5
scenario). Dots indicate 10% significance. (c-d) 1950-2015 land precipitation trends in obser-
vations (GPCC; median: solid black line, 95% range: gray shading) and CMIP5 simulations
(density: solid blue line; median: dashed blue) of (c) Western Mediterranean (10◦W-0◦/30-
40◦N, see box in (b)) and (d) Eastern Mediterranean (20-40◦E/30-40◦N) November-April pre-
cipitation.

and the intricate topography, make the regional climate particularly complex, subject to large

inter-annual variability and strong spatial gradients. Early research highlighted the importance

of poleward shifts of the large-scale circulation in explaining drying trends in subtropical and

mid-latitude regions like the Mediterranean [160, 222]. The combined poleward expansion of

the Hadley circulation [160] and shift of mid-latitude storm tracks, like the North Atlantic

storm track [275, 195, 16], were believed to be the major drivers behind Mediterranean drying.
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Figure 2-15: CMIP5 mulit-model mean relative change in annual precipitation (%) under
RCP8.5 by the end of the 21st century (2071-2100 minus 1976-2005). Dots indicate agreement
by more than 80% of models on the sign of the change.

While their impact has been confirmed for Southern hemisphere Mediterranean-like climate

regions (Chile, South Africa and southwestern Australia), recent studies questioned their role

in explaining hydroclimatic trends in the Mediterranean Basin [226]. Attention turned to

Mediterranean regional-scale changes in atmospheric circulation as direct causes of the winter

precipitation decline [225, 278, 279, 16, 36], but their origin has remained obscure [226]. In

addition to scientific interest, water planning and management, as well as climate mitigation

strategies in this region, would benefit from a better physical understanding of the projected

drying. The latter may also be particularly useful to reduce inter-model spread in projections,

which remains high despite the quasi-unanimous agreement on the sign of future precipitation

trends. In the case of Morocco, for instance, winter precipitation declines by the end of the

21st century range from -5 to -60% across models from the IPCC Fourth Assessment report

[133].
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Due to the severity of projected regional trends, the downscaling of climate projections for

the Mediterranean region and Morocco has been the focus of numerous studies [101, 225, 278,

80, 246, 282]. Regional-scale information is indeed critical to assess climate change impacts

and develop concrete adaptation strategies. Downscaling allows a finer-scale assessment of

climate impacts on temperature, precipitation, river flow, snowpack and agriculture, among

others. This is especially important for Morocco where components of the water cycle can

vary significantly across space. Latitude is a major factor, of course, with a cooler and wetter

north, and warmer and drier south, but the complex topography also plays an important role

that only high-resolution analyses can apprehend [223].

Two approaches to regional climate downscaling exist: statistical downscaling, which relies

on empirical relationships between large-scale climate fields (geopotential, SSTs, etc.) and

small-scale climate variables of interest (temperature, precipitation); and dynamical down-

scaling, which involves the use of Regional Climate Models (RCMs), which, like global models,

solve the physical equations of atmospheric flow but at higher resolution, over a smaller do-

main, and are forced at the domain boundaries by output from a given global model. RCMs

can also incorporate physical mechanisms not well-resolved at the GCM scale [90], particu-

larly those connected to fine-scale topography. Statistical downscaling has been applied to

northwestern Africa [116], but has remained marginal due to the overall scarcity of station

data in the region; most studies have thus adopted a dynamical downscaling approach. Ear-

lier dynamically-downscaled projections were characterized by rather coarse resolutions (50-

60km) [64, 166], but the improvements in computational efficiency now allow resolutions below

15km. For Morocco and the Mediterranean, the Mediterranean Coordinated Regional Climate

Downscaling Experiment (MED-CORDEX) initiative, an RCM intercomparison project over

the Northern Africa/Europe region, has been extensively used to analyze local-scale climate

trends and their impacts on water availability in Morocco and the Western Mediterranean

[247, 80, 166, 246, 282], with a finest resolution to date of 12km (0.11◦). Enhanced resolution

has brought significant improvements to the simulation of seasonal patterns of temperature

and precipitation, as well as of extreme events [247]. Consistent with the GCMs used as input,

regional simulations have consistently shown severe declines in precipitation across the region

and Morocco specifically [247, 80, 282]; coupled with simplified hydrological modules, they
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were also used to project decreases in runoff [166] and dam storage [246].

No regional studies however have attempted to physically explain precipitation projections

over Morocco and connect them with physical mechanisms acting at the regional scale. Re-

gional simulations indeed offer the opportunity to evaluate the relevance of physical drivers of

precipitation trends and assess the likelihood of coarse-resolution GCM hydroclimate projec-

tions. In addition, few studies have used regional simulations to improve our understanding

of Morocco’s water cycle, particularly its snow component. The simulation of snowpack in

200km-resolution models is obviously completely unreliable when snowfall occurs on spatial

scales of a few dozen kilometers at most, as is the case in the Moroccan Atlas [165]. High-

resolution simulations therefore make it possible to assess water fluxes at very small scales,

compare with available ground data, and estimate their response under climate change.

2.5 Conclusion

Due to its scarcity and high variability, water has been a topic of active interest in Morocco and

the Mediterranean. Much effort has been put into understanding the regional hydroclimate in

the current period and for the upcoming century. Variability of precipitation at all time scales,

from weekly to multi-decadal, as well as the substantial spatial variability in water availability

and water cycle components, create major challenges to water management in Morocco and

the surrounding regions. This thesis builds on the results presented in this chapter, and brings

useful contributions to major obstacles facing water management in Morocco.
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Chapter 3

Seasonal precipitation forecasts for

Morocco

C⃝ AGU 20181

3.1 Introduction

Interannual variability of precipitation is a constant obstacle to efficient water management and

agricultural planning in semi-arid Morocco, where droughts are common and take a heavy toll

on agricultural production. A large fraction of Morocco’s arable land (80%) is located in arid

and semi-arid regions, mostly in the northeast (Moulouya Valley), central west (Casablanca,

Beni Mellal, Marrakech) and southwest (Souss) of the country. These regions are characterized

by limited and erratic precipitation, with a high risk of drought. In parallel, they account for

55% of the national cereal production, and support about half of the country’s livestock [74].

As most of the cropland (85%) is rainfed, and because interannual water storage is limited,

crop water demand must usually be satisfied by the same year’s precipitation. Precipitation

therefore strongly impacts agricultural production and crop loss can be significant in times of

1This chapter is a partial reproduction of Tuel and Eltahir (2018) [251]. The introduction and literature
review have been reformatted, and real-time forecasts extended to 2020.
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drought (Fig. 2-11).

We saw in the previous chapter (2) that seasonal forecasts, whether empirical or dynamical,

have thus far displayed limited skill, which makes them unreliable in practice. Therefore, in the

current decision-making system, planners base their decisions on climatological probabilities

for precipitation. This compels them to adopt very conservative risk levels in order to avoid

water shortages should severe droughts occur, basically assuming a worst-case scenario every

year, and sticking to a one- or two-year horizon at most. This leads to high inefficiency since

it is not optimal to hedge every year against a bad drought. This underlines the substantial

need for precipitation forecasts in Morocco. Here, we focus on one particular region, the Oum-

Er-Rbia watershed (Fig. 2-1), in central Morocco, an area of high economic importance for

the country. It concentrates 30% of the country’s irrigated land and half of its hydroelectric

capacity, and supplies water to over seven million people (including two of Morocco’s largest

cities, Casablanca and Marrakech). Currently, 90% of all water is used for irrigation, and 95%

of available water resources are mobilized each year.

Early and reliable forecasts of seasonal precipitation would be particularly useful to mitigate

the impacts of droughts and make the most of wetter years. We propose here a simple sta-

tistical approach to seasonal forecasting of precipitation in Morocco. Statistical forecasting

algorithms are plenty, like multiple linear regression (MLR) or Canonical Correlation Analysis

(CCA), an approach similar to MLR but applied to multivariate pattern predictands [267].

All, however, require a series of predictor variables, or covariates. Forecasting a variable of

interest thus requires first to identify such covariates, and then to implement a forecast model.

Our methodology falls therefore into two parts (Figure 3-1): covariate definition on the one

hand, and covariate selection with model fit on the other. Previous studies identified rele-

vant areas of sea-surface temperatures teleconnected to wintertime weather over our region of

interest [49, 191]. Building on these results, we implement a series of statistical methods to

identify, within those regions, the areas most connected to Moroccan precipitation. Then, in

a second step, we fit linear models and identify small groups of robust predictors to get the

best forecasts of three-month precipitation totals, as compared to observations.
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Figure 3-1: Summary of methodology followed in this chapter. The first step is to define
potential precipitation predictors from monthly SST data and observed seasonal precipitation.
Then, statistical models are fitted and the most robust, or informative, predictors are selected.
Finally a traditional assessment of forecast skill is implemented.

3.2 Region of study

In the northwestern quadrant of Morocco, delimited by the Atlas and Rif ranges, which contains

the Oum-Er-Rbia watershed, the climate is mediterranean – mild and wet in winter, and hot

and dry in summer. Average annual precipitation varies significantly over this region, generally

increasing with both latitude and elevation (Fig. 2-2). Thus, the low point is around Marrakech

to the south, with only 200 mm of annual precipitation, while mountainous regions to the north

receive well over 1000 mm. The wet season extends from November until April, when moist

air is advected from the Atlantic ocean, located to the west and northwest. The wet season

accounts for about 90% of annual precipitation. Precipitation events during this season tend

to be short and irregular, occurring when mid-latitude weather systems, that formed over the

Atlantic ocean, drift towards the coast, under the influence of prevailing winds. Typically, in

the north-western Maghreb, a rain season consists of at most 10-14 single precipitation events

[27].

A closer look at the annual precipitation cycle in the region reveals the presence of two

modes in the distribution, with one peak in the early part of the wet season (around December)

and a second in the later part, around March (Fig. 3-2). Precipitation thus appears to arrive

in two independent waves, one in winter, the other in spring, with no apparent link between
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Figure 3-2: Top: Map of the Oum-Er-Rbia watershed, showing elevation (filled contours), main
cities (black dots), dams (blue dots), channels (dot-dashed blue line) and irrigated perimeters
(dark green). Bottom: Annual precipitation cycle over the Oum-Er-Rbia basin, from Septem-
ber to August (data: CRU TS4 [108]).

the two. For instance, Spearman’s correlation coefficient between November-to-January and

February-to-April precipitation is only 0.11 for the whole 1901-2015 period, and 0.17 for 1950-

2015, both of which are insignificant at the 5% level of confidence. Similarly, knowing how
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,uch precipitation fell from November to January brings now information about how much

precipitation will fall from February to April (Table 3.1). This suggests that precipitation

during the wet season may have different physical origins depending on the time of year, and

that teleconnections for each "wave" will be different. This motivates us to divide the wet

season into several subseasons and develop forecast models for each. We focus in this study

on three precipitation series: November-to-January (NDJ), December-to-February (DJF) and

February-to-April (FMA). A distinction is made between NDJ and DJF because, though the

teleconnection of precipitation to the NAO usually steps in during November (Fig. 2-6), sub-

monthly NAO variability may cause it to be delayed until early December, thus impacting

predictability of precipitation. Separating NDJ and DJF also helps determine how predictable

early-wet season precipitation is.

Coupled to its spatial variability, precipitation is also highly variable in time, both intra-

and inter-seasonally. The annual coefficient of variation ranges from an average of 30% in

the northwest to over 100% in the most arid areas. Local climate is characterized by long

periods of droughts that tend to affect wide areas. Short-term seasonal lack of moisture is

also common, either at the beginning (November-December) or the end (March-April) of the

growing season.

FMA
NDJ Dry Avg Wet

Dry 0.37 0.24 0.39
Avg 0.37 0.34 0.28
Wet 0.26 0.42 0.33

Table 3.1: Empirical probability table of FMA precipitation categories conditioned on NDJ
precipitation (1950-2015 period). For instance, when NDJ precipitation was average, FMA
precipitation was higher than average ("wet") 28% of the time.

3.3 Identified teleconnections

A large body of work exists on the teleconnections to wintertime western European and north-

western African weather. As discussed in the previous chapter, precipitation over northwestern

Morocco during late fall and winter (November-February) is strongly influenced by the North
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Atlantic Oscillation (NAO). In the spring, however, as the SLP dipole drifts north, the connec-

tion to the NAO is gradually lost (Fig. 2-6). For that period, studies have suggested a stronger

link to Pacific sea-surface temperatures (SSTs), in particular to the ENSO [167, 228] and the

Pacific Decadal Oscillation (PDO) [167] phenomena. Seasonal lagged relationships have also

been found by Knippertz et al. (2003) [147], who suggested a connection between winter

ENSO conditions and spring rainfall over North Africa and the Iberian Peninsula. Overall,

associations between Pacific SSTs and Mediterranean precipitation have been described during

all seasons of the year [228].

Mechanistic explanations were lacking until the recent dynamical investigation by Shaman

and Tzipermann (2010) [228], who suggested, based on an analysis of vorticity anomalies, that

ENSO-related forcing of large-scale atmospheric circulation resulted in stationary barotropic

Rossby wave trains propagating eastward from the eastern equatorial Pacific. This generates

anomalous vorticity patches off the coast of Portugal and Morocco, which in turn impact winds

in this region. This modulation of westerlies over southwestern Europe is found during fall

(mainly over the Iberian peninsula) as well as spring (with a zone of influence displaced to the

south). The physical mechanism behind it may be acting year-round, but remains marginal in

summer – because the strong anticyclone acts as a blocking – and in winter, when the influence

from North Atlantic pressure patterns is dominant. Spring and fall offer the opportunity for

this mechanism to become more prevalent, since the Azores High is still weak and the storm-

track has shifted north.

The teleconnection of winter precipitation to NAO is very strong, but the latter has proven

remarkably challenging to predict. Many studies have suggested that a large fraction of NAO

dynamics arose from internal, non-linear phenomena intrinsic to the atmosphere [78]. Nev-

ertheless, while sub-seasonal variability of the NAO might arise from climate noise, external

forcings likely play a significant role on longer timescales [233], most notably the ocean [24].

Given its large thermal inertia, ocean temperatures force the lower atmosphere over the course

of months, making them very useful predictors for a wide range of climatic phenomena around

the globe. Studies by Rodwell and Hoskins (199) [214] and Saunders and Qian (2002) [219] un-

covered links between SST anomalies in the months leading to November and winter NAO. In

particular, emerging in late spring and persisting until early fall is a noticeable North Atlantic
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horseshoe pattern [49], with warm anomalies southeast of Newfoundland and cold anomalies

to the northeast and southeast, which precedes positive phases of the NAO and could explain

up to 15% of its variability. For the North Atlantic domain, SSTs likely play a role in de-

termining the position, extent and strength of the meridional temperature gradient that in

turn drives baroclinic instability and the storm track in the region. There is still debate about

which specific region of the Atlantic is most strongly linked to winter NAO, from tropical

and subtropical regions [50] to areas off the UK or Newfoundland [219]. Connections to other

major ocean basins have been proposed as well, such as the southern Atlantic [209] or the

tropical Indian and Pacific oceans [240]. Models and regression analyses suggest however that

the oceanic influence on North Atlantic climate is nonstationary and appears to have varied,

sometimes significantly, over the last two centuries [119].

Other climate variables, like Arctic sea-ice concentrations, are also believed to force winter

atmospheric circulation [245], but their record is often limited to the satellite age (usually

post-1980). This limits considerably the number of points that can be used to develop forecast

models, adding more uncertainty to the process. Therefore, the focus here will be on SSTs,

which have a long and reliable record going back to at least 1950 [144]. We consider only

one other type of predictor, the Snow Advance Index (SAI) defined by Cohen and Jones [46]

from the growth rate of October Eurasian snow cover. They found it to be strongly related

to the winter NAO index since 1972, and suggested a convincing mechanistic explanation [46]

(section 2.2.3). This index is available starting in 1972, a period long enough to make it worth

considering in our models (Fig. 3-3).

Finally, in recent years, attention given to climate and weather models has also grown con-

siderably. The improvement of computational capacities made it possible to simulate winter

weather of the North Atlantic in much better detail, and some of the latest forecasts from

Numerical Weather Models (NWMs), though they underestimate the variability of the NAO,

show good skill at predicting its phase at the seasonal time scale [69].
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3.4 Data

Precipitation data are taken from the CRU TS4.00 database [108], which extends from January

1901 to December 2015. The GPCC dataset [281] is also used for comparison and to get

estimates of precipitation (for 2017 onwards, which were missing from CRU TS4 when forecasts

were first developed).The most skillful numerical NAO hindcasts at a one-month lead are the

ones published in Dunstone et al. (2016) [69], covering the winters 1981-82 to 2015-16. To be

consistent with that study, observed NAO values are computed from the HadSLP2 database

[7] as the difference in monthly sea-level pressure (SLP) between the Azores (28◦-20◦W, 36◦-

40◦N) and Iceland (25◦-16◦W, 63◦-70◦N). In addition, we use as predictor fields the SST data

from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset [205] at 1◦

resolution, covering the period 1870 to present. Because SST data before the 1940s have been

shown to be less precise and to have generally larger uncertainty [144], and because station

data for precipitation display several missing years throughout the 1920s and 1930s, we choose

to focus on the period 1950-2015. We restrict our analysis to the North Atlantic (0◦N to 65◦N;

80◦W to 6◦W), Pacific (50◦S to 65◦N; 120◦E to 65◦W) and Mediterranean (30◦N to 46◦N; 6◦E

to 37◦E) domains, as the literature suggests that they may be important [214, 49, 219, 240, 50].

Finally, the 1972-2015 Snow Advance Index (SAI) is taken from Cohen and Jones [2011].

3.5 Defining potential predictors

The first step in developing statistical forecasting models for any variable of interest is to select

likely predictors. But how to select among millions of potential covariates at many different

lead times? Many studies rely on previously identified predictors – for instance, ENSO or

the Southern Oscillation Index to forecast precipitation. Still, in our case, there is little a

priori knowledge of specific predictors to include in the models. Previous studies, however,

have identified potential sources of skill in forecasting atmospheric teleconnection patterns at

seasonal timescales (see section 3.3). In particular, Sea-Surface Temperatures (SSTs) in given

ocean basins have been shown to constitute a substantial source of information.

82

��������������������������		�	��	�������������������
���




1980 1990 2000 2010

−
3

−
2

−
1

0
1

2

Winter

S
A

I/
N

A
O

 I
n
d
e
x

SAI
DJF NAO

r = 0.54

Figure 3-3: Pointwise correlation maps between DJF precipitation (from PERSIANN dataset
[11]) and the weekly Snow Advance Index (SAI) [46], for the period 1972-2010. The correlation
pattern is very similar to that of the NAO index (Fig. 2-6).

3.5.1 Methods

SST fields, however, are complex and highly multidimensional. To extract meaningful indices

from those thousands of potential covariates at various different lead times, we display maps of

several measures of statistical relationships between precipitation series and lagged SSTs. We

go back as far as nine months in advance (May of the preceding hydrological year), as Czaja

and Frankignoul (2002) [49] suggested that North Atlantic spring SSTs may force wintertime

atmospheric circulation.

We first identify links between SST fields and precipitation series using well-known statistical

methods, on a point-by-point basis, i.e. by considering the SST at each point in space as a

potential predictor. In addition to correlation maps, we look at SST anomalies preceding a

dry, average or wet season (composite maps). We also implement an Analysis-Of-Variance

(ANOVA) procedure and calculate maps of mutual information (MI) between SSTs and pre-

cipitation time series, both of which measure how well the variability of a predictor explains

that of the predictand. To take into account the strong spatial covariance of SST fields, we also

83

��������������������������		�	��	�������������������
���




rely on Canonical Correlation Analysis (CCA), a statistical technique similar to multilinear

regression, that identifies maximally-correlated patterns in the predictand and the predictor.

Overall, these varied methods can highlight a wide spectrum of potential relationships. Their

comparison helps separate spurious predictors from those with high potential skill. Using dif-

ferent methods also avoids being constrained by the assumptions behind a single one, nor by

any p-value thresholds.

Predictor significance is based on bootstrap confidence intervals. Each method is applied to

5000 random ordering of years for SSTs, while the ordering of the precipitation series is kept

constant. This allows to estimate confidence intervals at any given level of significance, and

potential SST predictors are then defined by encapsulating the areas of highest significance,

selected among those extending at least 15◦ in each dimension. We end up with lists of about

two dozen potential indices for each season, at many different lead times (see Table3.2).

Similarly to [49],the question of whether there is a physical connection between the two fields is

addressed by adopting the null hypothesis that there is none. If true, then temporally shuffling

the sequences of the two fields (each shuffled differently) and applying one of the statistical

methods should not lead to a statistically different outcome. Areas of statistical significance

are therefore identified by generating 1000 maps for each method (excepted for MI, which is

more computationally demanding, and for which we only look at the results for the historically

ordered data), each time shuffling the precipitation series randomly, and comparing at each

grid point the 2.5% and 97.5% quantiles to the values obtained with the original series.

Correlation maps

The correlation coefficient is undoubtably one of the easiest ways to highlight statistical links

between two variables. Its interpretation must be done carefully, however. Depending on

the method, the results may suggest non-existent relationships or over-estimate existing ones.

The three most widely used correlation measures are Pearson’s (rP ), Spearman’s rank (rS) and

Kendall’s tau rank (rK) correlation coefficients. While rP explicitly looks for linear relation-

ships between two data series, and is thus only a measure of their linear correlation, rS and

rK both measure the similarity of the ordering of the two data series. rS is defined as Pear-
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son’s correlation coefficient between the ranks of observations of the two variables. Kendall’s

τ , for its part, is computed by looking at how often the respective rankings of two pairs of

observations are in agreement. Thus, both rS and rK are more robust to outliers and, more

importantly, can detect certain non-linear relationships that rP would fail to highlight.

Composite maps

One other way to identify potential predictors of seasonal precipitation is to look for variables

whose distribution is significantly different between years when precipitation is rather low and

years when it is rather high. This is the basis of composite maps. First, years are divided into

three categories according to the precipitation observed during the season of interest: below-,

near- and above-average, as defined by the 33% and 67% percentiles of the precipitation series.

SSTs are then averaged for each group of years, and the resulting maps are evaluated against

confidence intervals to identify areas of significance.

ANOVA

Similarly, we can look at the problem the other way and look for variables such that the

distributions of seasonal precipitation when those variables are low or high are significantly

different. An Analysis-of-Variance (ANOVA) procedure is implemented for each SST grid

point by dividing the years in the record into three categories, based on the 33% and 67%

percentiles of the corresponding SST time series. The ANOVA method then tests whether the

mean precipitation values for each of those three categories are significantly different. In other

words, it evaluates how much of the variability in the predictor can be attributed to variability

in the predictand. The significance of the decomposition is given by the F-statistic, defined

as the ratio of between-categories variance over within-category variance for the precipitation

data. The higher the F-statistic, the more the predictor is able to "separate" the predictand

and reduce its uncertainty.
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Mutual information

Mutual information (MI) belongs to the field of information theory as developed by Shannon

and is conceptually linked to the notion of entropy. For two random variables X and Y of a

joint probability distribution p, their mutual information is defined as

I(X, Y ) =

∫∫

x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

which can be reformulated as the difference between the entropy of Y and that of Y |X. If X

explains a lot about Y , then we can expect the entropy of Y |X to be low, and the mutual

information to be high. Similarly to ANOVA, it gives information on the residual uncertainty

on the predictand when the value of the predictor is known. In other words, the higher MI,

the larger the reduction in uncertainty on the predictand when the predictor is known. One

of the main advantages of this method is its being non-parametric, meaning that it can easily

detect non-linear relationships in the data. On the other hand, it is computationally intensive;

the main practical difficulty here is the estimation of the joint density p(x, y) and of the

marginal densities p(x) and p(y). Non parametric density estimation methods are costly in

high dimensions and necessitate a large amount of data.

Canonical Correlation Analysis (CCA) and composite maps

Since the previous methods are independently applied at each grid point, they do not take

into account the substantial spatial covariance of SST data. To remedy this, we turn to

Canonical Correlation Analysis (CCA), a statistical technique similar to multilinear regression,

that identifies maximally-correlated patterns in the predictor and predicted fields. Each field

is seen as a multivariate vector, and the analysis yields linear combinations of the two sets of

variables whose correlation is maximal. In other words, if Xt(s) denotes a vector of predictors

(SST spatial field, index by location s), and yt is the observed precipitation for the same year,

CCA will output a vector ξ(s) such that corr (
∑

s ξ(s)Xt(s), yt) is maximized. The procedure

can be repeated by looking for linear combinations of Xt and yt that are uncorrelated to the
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previous combinations, but here we choose to stop after the first step. Instead of taking the full

SST field Xt(s) (several thousand grid points), which would make CCA too computationally

demanding and its results quite unstable [267], SST fields at each time lead are filtered using

a latitude-weighted Principal Component Analysis. Only the first principal components that

explain at least 90% of variability are retained, and used as input for the CCA analysis.

3.5.2 Results

Applying the above methods to SST fields at different time leads yields a large number of

potential predictors, displayed in Table 3.2. The most important ones (selected during model

fit, see section 3.6), are highlighted on Figure 3-4 (left). Both the NDJ and DJF precipitation

series appear to be most influenced by extratropical North Atlantic SSTs, from late spring

until late fall. This is in keeping with previous results highlighting specific SST patterns in

the same area linked to wintertime storm track position and strength, and thus to the NAO

[214, 119, 219] (section 3.3).

Regarding the FMA series, the connection to the North Atlantic is overall weaker than for

the other two series, though a horseshoe-like structure does appear in spring SSTs as well.

The concurrent NAO still impacts spring precipitation, albeit much less so than in winter.

The pattern of statistical links with winter (November to January) SSTs resembles that of

the winter NAO itself, hinting at some potential feedback mechanism between winter NAO,

winter SSTs and spring atmospheric circulation. A wide region of positive correlations stretches

from the eastern seaboard of the US to northwestern Europe, linked to two areas of negative

correlation values. FMA precipitation is most signigicantly linked, however, to Pacific SSTs,

from early summer to December. The pattern found by all methods is very similar to that

of the Pacific Decadal Oscillation (PDO), one of the major modes of SST variability in the

Pacific ocean [248].

A comparison of some results from three methods is shown on Figure 3-4 (right). Overall,

the different approaches to predictor definition highlighted above agree quite well on what

areas are significantly linked to precipitation over the Oum-Er-Rbia, though the magnitude

of the link and exact geographical delimitations vary somewhat between methods. The list of
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potential predictors therefore includes many highly correlated predictors, from which the best

are selected during model fit (section 3.6.1).
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Table 3.2: List of potential SST predictors defined for each precipitation series. Yellow high-
light denotes best predictors selected by the models (see Figure 3-4, left). Bounds are given
by minimum/maximum longitude and minimum/maximum latitude of the areas defining the
SST indices.
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Figure 3-4: Left : Maps of each season’s robust precipitation SST predictors: NDJ (a), DJF
(b) and FMA (c). Robust predictors are defined as the ones selected most often during the
cross-validation process (see section 3.6). The predictors shown on the above maps were se-
lected in the models at least 90% of the time. Right : Example of results from three predictor
identification methods (d,e: ANOVA; f,g: CCA; h,i: composite maps) between the DJF pre-
cipitation series and October North Atlantic SSTs (d,f,h) and the FMA precipitation series
and December Pacific SSTs (e,g,i). Stipling corresponds to significance of the results with 95%
confidence, as explained in the body of the article. Potential predictors were selected from
such maps, drawn for every possible SST domain/lag time/precipitation series combination,
and keeping areas found significant by all methods and extending at least 5◦ in each dimension.
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3.6 Forecast models and predictor selection

3.6.1 Methods

Statistical models

Empirical forecast models are built for each precipitation series (NDJ, DJF and FMA) by

relying on the information contained in the SST indices defined in section 3.5. Two main

models are considered: Multiple Linear Regression (MLR) and the Generalized Linear Model

(GLM) [61] with a logarithmic link function. The latter is considered because it brings a slight

improvement in fit when regressing winter precipitation against the concurrent NAO index

(see Discussion). In MLR, the expected value of seasonal precipitation y is modelled as a

linear response of given covariates X : E[y] = Xβ, while the log-link GLM model assumes

ln (E[y]) = Xβ. In addition to the exact value of precipitation, we are interested in forecasting

discrete events, like droughts. To that end, we define precipitation categories (below-, near-

and above-average) based on the terciles Y33% and Y67% of each series. Thus, years for which

the seasonal precipitation was below its 33% percentile (Y33%) were categorised as "dry". For

each year t, by sampling regression coefficients and residuals, an empirical distribution p(y, t)

of the forecasted precipitation is estimated, from which we determine confidence intervals and

probabilistic categorical forecasts; the probability of a dry year being equal to
∫ Y33%

0 p(y, t)dy.

The predictive potential of the best NAO forecasts [69] is estimated via MLR using two cross-

validation mathods. In the first, the model is trained on observed NAO and precipitation

from 1901-1980, and validated using NAO forecasts over 1981-2015, rescaled to have the same

mean and variance as observations. The second only relies on 1981-2015 hindcasts and a

leave-one-out approach is selected.

Feature selection and cross-validation

The large number of potential predictors defined in section 3.5 must be narrowed down to

avoid overfitting, given the limited length of the time series. We do this in two steps: the first,
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based on LASSO regression using the R package glmnet [86], helps select a small subset of

robust potential predictors (typically 12-15) out of the many initial ones. LASSO is a well-

known, useful technique that performs feature selection by adding to the error a penalty term

to favour a sparse vector of regression coefficients (details and references can be found in [86]).

In a second step, the most informative predictors are selected by a combined forward and

backward variable selection process, also known as stepwise regression. Starting from a model

with no covariates, predictors are added, one at a time, to a list of "best" predictors leading

to an "optimal" model. At each step, a new predictor is considered: it can either be added to

the list of currently retained predictors, or replace one of them. Goodness-of-fit is estimated

based on the Akaike Information Criterion (AIC), equal to twice the difference between the

number of covariates included in the model and the model log-likelihood. A smaller AIC

indicates a better fit; models with more parameters are penalised, and in that way the AIC

is similar to the adjusted coefficient of determination. Predictors stop being added when no

more improvement in AIC is possible. We also check that randomly shuffling the predictors

at first does not significantly impact the stepwise regression.

In addition, a cross-validation procedure must also be implemented to assess model skill

in the most objective way possible. Because feature selection implies looking at the data to

extract the most relevant predictors, in order to avoid any bias in skill, both predictor screening

and model building must be cross-validated simultaneously [173].

We adopt a k-folds cross-validation, by dividing the sample into subsamples of size k. Each of

those is withheld in turn for validation, with all remaining years serving as training set. Thus,

if k=10, forecasts for the years 2006-2015 are issued by models trained on 1950-2005. The value

of k is varied from 5 to 25, to examine the robustness of the models. After separating the

dataset into training and validation sets, the two feature selection steps (LASSO and stepwise

regression) are conducted on the training set only, and model skill is assessed for the left-out

validation data. This cross-validation methodology ensures that the data against which model

skill is evaluated is never used at any step of the model building process.

Our predictor definition methodology described in the previous section did involve using all

data points to compute ANOVA maps, CCA coefficients, etc. Still, because this process is time-

consuming and involves a lot of selection by hand, it could not be repeated independently at
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every step of the cross-validation. A few trials have however shown no significant differences

when selecting different subsets of the observed data. Most relationships appear strong and

stable enough so that similar predictors would have been selected in any case.

Based on this procedure, different optimal combinations of predictors may be – and in fact,

are – selected to build the models, depending on the training set. This variation should not

be seen as an attempt to maximize skill at the expense of physical interpretability; to the

contrary, it helps avoid under- or overfitting of the models for given years and accounts for the

uncertainty both in the importance of each predictor and in the number of optimal predictors.

This approach can be considered more realistic and should better reflect the actual skill of the

models, since forecasted years are clearly separated from the model-building process.

Skill Scores

For continuous forecasts, we use the coefficient of determination r2 and root mean-square error

(RMSE) to evaluate the accuracy of the models. For categorical forecasts, we rely on the hit

score HS, equal to the percentage of correct hits (i.e. when the right category is predicted): if

z(t) is the observed category and ẑ(t) is the forecasted one,

HS(M) =
T∑

t=1

{ẑ(t) = z(t)}

We also consider the forecast index FI, defined as the average probability forecasted for

the realized category. With pj(t) the assigned probability of category j in year t:

FI(M) =
T∑

t=1

pz(t)(t)

A perfect model would have both FI=HS=1 (all categories are forecasted correctly, with a

probability of 1) and a no-skill model would have FI=HS=1/3 (random category is forecasted).

To assess how well the models warn against specific events – for instance, droughts, we also

look at the Relative Operating Characteristic score (ROC) score, based on the comparison of
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hit- and false alarm-rates for different warning thresholds. For a category j ∈ {1, 2, 3}, and for

a given threshold pw, a warning is delivered if the forecasted probability pj(t) for category j is

greater then pw. The Hit Rate (HR) and False Alarm Rate (FAR) are estimated as follows:

⎧
⎪⎨

⎪⎩

HR =
∑

t {ŵ(t)=1,w(t)=1}∑
t {w(t)=1}

FAR =
∑

t {ŵ(t)=1,w(t)=0}∑
t {w(t)=0}

From a sequence of thresholds pw between 0 and 1, one can estimate the corresponding

sequences of HR and FAR values, and the ROC is defined as the area under the curve in the

HR-vs-FAR plot (estimated here by the trapeze method). Models with ROC> 0.5 display skill

(hit-rate is higher than false-alarm rate) while a no-skill forecast will have ROC=0.5 (hit-rate

and false-alarm rate are equal).

3.6.2 Results

Historical hindcasts

The approach based on NWM NAO hindcasts [69] shows little skill, with the classifier trained

on hindcasts only yielding FI= 0.36 and HS= 0.40. The model trained on 1901-1980 obser-

vations and validated on 1981-2015 hindcasts doesn’t do as well as the one validated using

NAO observations, as expected, but still shows some predictability (r = 0.37 against r = 0.56,

FI = 0.35 against FI = 0.38 and HS = 0.37 against HS = 0.41). One issue may be that

the classical definition of the NAO index may not be optimal to forecast winter weather in

Northwestern Africa. Studies have shown that the southern pole of the NAO between the

Azores and Gibraltar had significantly more influence on that region than SLP conditions over

Iceland [147]. Instead of summarising the whole SLP field in the NAO index, it may be better

to look at more specific SLP domains.

Models are built and fitted for all three seasons; for the DJF and FMA season in particular,

we issue forecasts at four different lead times: on the first day of the season, and one to three

months before the start of the season. As an example, for DJF, models are built using all
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information up to September 1st, October 1st, November 1st and December 1st. The NDJ

and DJF seasons are also analysed independently over the 1972-2015 period to estimate the

improvement in skill brought by the SAI index. It must be noted, though, that because of

the time required for processing the data, the full SST analysis fields are only available more

than a month after the month of interest, i.e. July SST data are available in early September.

However, that delay is mainly due to the sea-ice homogeneization process, and a preliminary

SST field is made available on the 10th of the month after the month of interest (10th of August

for July SSTs). For all models, 5-7 predictors are retained after feature selection. Figure 3-4

(left) shows the robust SST predictors that were selected most often by each model.

Results are shown in Table 3.3. Two main observations can be made. First, forecast skill

is low for NDJ, but much higher for the other two series, for which model skill can safely be

said to be significantly above that climatology. DJF is more predictable than NDJ, possibly

because the NAO pattern during November is less stabilized, and thus less predictable, or

because the beginning of the wet season in Morocco may shift by several weeks, thus adding

noise to the NDJ data. DJF predictability is also more robust that that of FMA, since, when

increasing k in the cross-validation, r2 remains close to 0.40 for DJF but drops to 0.27 for

FMA (Figure 3-7, left). Second, the GLM model performs better than the MLR model for

all seasons. Both the increase in r2 and the reduction in RMSE are significant, though the

skill is more mixed when it comes to categorical forecasts (Table 3.3). This may be due to the

asymmetry in the confidence intervals caused by the log-transformation.

Regarding lead times, the skill of one-month-ahead forecasts is about the same as that of

models fitted on the first day of the season. For both DJF and FMA, forecast skill drops

fast as lead time increases (Fig. 3-5), but remains somewhat higher for FMA (r2 =0.15 three

months ahead, compared to 0.05 for DJF). Table 3-5 presents more details on forecast skill

vs. lead time for the DJF season. Forecast skill drops precipitously before November 1st, and

remains about constant after October 1st.

Figure 3-4 (left) shows that for both the NDJ and DJF series, forecast skill mainly relies

on North Atlantic SST data, essentially corresponding to the horseshoe pattern between May

and November. The central Mediterranean basin is also selected for NDJ, although given the
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MLR GLM
r2 RMSE FI HS ROC r2 RMSE FI HS ROC

NDJ 0.12 58.2 (0.95) 0.44 0.51 0.67 0.14 55.5 (0.93) 0.44 0.49 0.64
DJF, Nov 1 0.34 62.1 (0.83) 0.45 0.51 0.68 0.37 57.1 (0.76) 0.46 0.53 0.76
DJF, Dec 1 0.37 60.5 (0.81) 0.46 0.56 0.73 0.41 55 (0.72) 0.47 0.54 0.80
FMA, Jan 1 0.33 52 (0.81) 0.50 0.59 0.71 0.36 51 (0.8) 0.48 0.58 0.74

Table 3.3: Regression (r2, RMSE in mm) and classification (FI, HS, ROC) skill scores for
the three precipitation series at different time leads, for the MLR and GLM models, over
the 1950-2015 period. We use a k-folds cross-validation strategy with k=10. The number in
brackets in the RMSE column corresponds to the percentage of the standard deviation of the
corresponding time series that the forecast RMSE is equal to.
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Figure 3-5: Model skill scores for DJF forecasts at various lead times with the GLM (triangle)
and MLR (cross) models.
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weak predictability of this series, the interpretation is subject to caution. The FMA series,

however, is much more strongly connected to the Pacific basin, with much of the skill coming

from the three poles of the PDO-like correlation structure. Robust predictors are highlighted

in Table 3.2. Generally, most of the optimal predictors were defined with the CCA method.

Unlike the other methods, CCA is not performed at the grid point level but takes into account

the spatial coherency of the SST fields. This may explain why predictors defined based on

CCA result perform better than others.

Skill improvement between the first DJF forecast (issued November 1st) and the second (issued

December 1st) is small, though detectable (Tables 3.3 and 3.4). The additional November SST

information may reflect the ocean-atmosphere forcing feedback, with November SSTs giving

information about the NAO pattern more likely to get established for the winter. In the case

of FMA, however, adding January SST information brings no predictability gain, in keeping

with our observation that the teleconnection to the Pacific ocean peaked in December.
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Figure 3-6: Results of GLM precipitation forecasts for (a) NDJ issued on November 1st, (b)
DJF issued on December 1st and (c) FMA issued on January 1st. The mean forecast is shown
by the red line, observed precipitation by the blue line, alongside 50% (shaded blue) and 95%
(shaded light blue) confidence intervals.
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Figure 3-7: Left : Coefficient of determination (r2) from the k-folds cross-validation, for the
DJF and FMA forecast models, as a function of k. Right : ROC curves computed from the
results of the GLM model applied to the DJF series. Curves are shown for all precipitation
categories: near-normal (black), above-normal (blue) and below-normal (red).

The impact of the Snow Advance Index (SAI, section 3.3), detailed in Table 3.4, is on the

whole positive, although very limited, and higher for NDJ than for DJF, even if the shortness

of the record is a cause for caution. There is a decrease in all skill scores except for NDJ

compared to the full record, as expected from the fact that we are fitting the models on a

shorter time period. The small improvement due to the SAI suggests that the series brings

independent additional information. Eurasian snow cover may indeed play a complementary

role to SSTs in forcing wintertime atmospheric circulation: whereas SSTs impact the strength

and extent of the meridional temperature, the SAI would reflect a land-atmosphere forcing

process over Siberia that also influence the state of the winter NAO [46]. In recent years,

however, the link between the SAI and NAO has degraded. It is a question whether climate-

change induces trends in the snow cover might disrupt this link, a question that requires more

analysis and is beyond our scope.

Examination of the ROC score shows that models show on average a good ability to predict

droughts, with values of 0.75 − 0.8 achieved for DJF and FMA. The ROC score can also be

computed on each precipitation category taken separately, to estimate how well the model is

able to predict it against the other two (see Figure 3-7 (right) for the ROC curves obtained
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GLM Model
r2 RMSE (mm) FI HS ROC

NDJ 0.12 60.2 (1.0) 0.42 0.46 0.58
NDJ+SAI 0.28 56.4 (0.94) 0.43 0.51 0.69
DJF, Nov 1 0.22 70.3 (0.96) 0.39 0.46 0.62

DJF+SAI, Nov 1 0.25 68.1 (0.92) 0.43 0.50 0.67
DJF, Dec 1 0.25 67.6 (0.91) 0.41 0.44 0.65

DJF+SAI, Dec 1 0.27 64.2 (0.86) 0.43 0.51 0.71

Table 3.4: GLM model skill scores for the 1972-2015 period, with and without the inclusion of
the SAI index. We use a k-folds cross-validation with k = 10. The number in brackets in the
RMSE column corresponds to the percentage of the standard deviation of the corresponding
time series that the forecast RMSE is equal to.

with the GLM model for the DJF season). The near-normal category systematically has a

lower ROC score, which is due to the fact that its probability is much less sensitive to the

potential predictability of the underlying phenomenon [145]. A ROC score of about 0.8 for

the DJF season corresponds to a potential predictability (r2) of about 0.4, in keeping with the

findings of Kharin and Zwiers [2003] in the case of a Gaussian setting. One must be careful

while interpreting those results, though, as the ROC score is relatively independent of forecast

calibration. This means that two forecasts of different biases will have equal ROC scores [145].

In consequence, the ROC tends to overestimate the skill that that be achieved in practice.

Real-time forecasts

For additional validation of our approach, we have also made "real-time" forecasts of DJF and

FMA precipitation over the last four years, using SST data as soon as it was provided. Results

are shown in Table 3.5. Our approach has performed rather well. In 2016-2017, conditions

were generally average while the model pointed to a slightly wet DJF and dry FMA. The wet

2017-2018 year was correctly predicted, as well as the dry 2018-2019 season. Dry conditions of

the last season (2019-2020), however, were missed for DJF, but correctly forecasted for FMA.

Overall, the approach has been able to exclude the correct category in all eight cases excepted

DJF 2019-2020.

100

��������������������������		�	��	�������������������
���




Table 3.5: Results of GLM probabilistic categorical precipitation forecasts for the DJF and
FMA seasons of the last four hydrological years (2016-2017 to 2019-2020), at different lead
times. The last column on the right shows the observed percentile, and yellow highlighting
indicates the observed precipitation category.
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3.7 Discussion

3.7.1 Physical mechanisms and forecast skill

Though the models display a good ability to predict precipitation with a limited number of

robust predictors, it remains to determine whether those predictors actually represent the un-

derlying physical processes associated with seasonal variability over Morocco. Precipitation

in Morocco almost systematically comes from the northwest (see section 2); the determining

factor is the direction of the winds [147]. Mechanisms connecting SST patterns and large-scale

atmospheric circulation over the North Atlantic have already been discussed in previous stud-

ies, whether for the winter NAO [191, 49] or for a fall teleconnection to the Pacific Ocean [228].

North Atlantic SSTs, in particular the horseshoe pattern, have long been believed to force the

winter NAO, via direct diabatic heating or transient eddy-mean flow interactions. Peng et al.

[2003] suggest that an anomalous flow is associated with heating from sea-surface temperature

anomalies, in turn creating an anomalous eddy forcing which drives an anomalous eddy-forced

flow. In other words, North Atlantic SST anomalies, especially off of Newfoundland, impact

heat release in areas of maximum eddy-growth for the North Atlantic stormtrack [93]. This

may weaken baroclinicity and in turn impact the strength and position of the stromtrack,

which influences the NAO index.

For DJF, composite precipitation and circulation anomalies, associated with high (above

the 67% percentile) and low (below the 33% percentile) values of each robust SST predictor

from Figure 3-4, display significant changes in the westerlies around 30◦N and 50◦N (see

Figure 3-8, a-f). Strengthened (respectively weakened) westerlies to the south are linked to

weakened (respectively strengthened) westerlies to the north. Precipitation anomaly fields

are consistent with this picture, with positive precipitation anomalies linked to strengthened

westerlies (and vice-versa). Overall, this signature is very similar to that of the NAO, albeit

of smaller magnitude, and the analysis corroborates the relevance of the selected predictors as

forcing variables for winter atmospheric circulation.

Regarding teleconnections to FMA precipitation, current knowledge is less specific. Though
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Figure 3-8: Composites of DJF GPCC precipitation (filled contours) and NCEP-NCAR re-
analysis 850hPa winds, based on (a-e) the five SST predictors defined on Figure 3-4 (middle
row) and on the DJF NAO index (f). Units for precipitation are percent of grid point standard
deviation; units for circulation are m/s. Only areas significant at the 90% level are shown,
based on a bootstrap estimation of confidence intervals.

a number of studies have identified teleconnections between tropical Pacific SSTs and European

precipitation [228], physical explanations remain debated. Positive precipitation anomalies are

still linked to strengthened westerly low-level winds, but there is no large dipolar structure over

the North Atlantic. Both Park and Leovy (2004) as well as Shaman and Tziperman (2010)

suggest that the connection is explained by Rossby wave trains originating from the Pacific,

which cause vorticity anomalies over Western Europe and the Mediterranean [189, 228]. Figure

3-9 shows 500hPa vorticity anomalies associated with high/low values of the SST predictands,

over the Eastern Pacific and North Atlantic sector. Pacific SST indices are associated with

large-scale alternating vorticity anomalies extending from the Pacific to the North Atlantic.

A patch of vorticity anomaly consistently appears west of the Iberian Peninsula (its sign

depending on the selected SST index), accompanied by a change in westerlies around 40◦N

that impacts precipitation over the region. The time lag between predictors and predictands

here is too long for the teleconnection to be due to direct Rossby wave trains [228]. The link

may however arise from the persistence of Pacific SSTs over the course of several months. As
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to the single North Atlantic SST predictor (Figure 3-9, f), it comes with a comparable vorticity

anomaly field, but limited to the North Atlantic only.)

Figure 3-9: Composites of FMA 500 hPa vorticity from the NCEP-NCAR reanalysis, based
on the six SST predictors defined on Figure 3-4 (bottom row). Units for vorticity are percent
of grid point standard deviation. Only areas significant at the 90% level are shown, based on
a bootstrap estimation of confidence intervals.

3.7.2 Some limitations

A criticism that can be made is that the whole record (1950-2015) is used to identify potential

predictors, which, in spite of the double cross-validation strategy, possibly introduces artificial

skill into the models. However, doing this procedure for every step of the cross-validation is

impossible in practice and would probably have yielded similar results. This we checked for

several SST-precipitation combinations, and found on the whole little variability, even if only

75% of the record was used (Figure 3-10). Selecting a wide range of potential predictors (see

Table 3.2) should help deal with probable non-stationarities in the ocean-atmosphere feedback,

and evident decadal scale variability in the relationships involved. The cross-validation process

implemented here is also intended to prevent overfitting.

Yet, the main drawbacks of hand-engineered covariates is that they are time consuming and

not scalable in practice. We attempted to define predictors based on the whole information

contained in each monthly SST field, by decomposing the latter into EOFs and performing an
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SVD decomposition on them, along with the precipitation series. This algorithm should select

on its own the most relevant SST variables and patterns without any need to define by hand

specific predictors. However, this approach turned out to be highly unstable and displayed

little skill in practice. This may be due to our trying to predict a single, noisy time series and

not a more stable multivariate field, as for instance in Totz et al. [2017], where the authors

tried to predict European winter precipitation anomaly maps. But SST EOFs themselves can

be rather unstable, even with more than 65 years of data. Principal components and the

associated time series may be quite different depending on which portion of the data was used

to obtain them – a bias rarely taken into account in most studies relying on EOF time series as

predictors. Though these may vary, the spatial reconstructions of CCA coefficients are stable

enough to confirm the reality of the statistical links (Figure 3-10).

Figure 3-10: Three examples of filtered CCA coefficient maps for May-June-July North Atlantic
SST anomalies, computed against DJF precipitation over the Oum-Er-Rbia. Each map was
produced by selecting 50 random years in the period of observation, 1950-2015. Even when
being rather conservative and keeping 75% of the available data, the obtained maps are very
similar and the corresponding identified predictors would not differ much.

Considering a single time series (precipitation over the Oum-Er-Rbia) is indeed one of the

limitations of our model. We know that, in winter, this series is strongly anticorrelated to

precipitation over Scotland or western Scandinavia, which respond antisymmetrically to the

same forcing by the NAO [129]. Thus, looking for predictors that show skill in predicting

both of these series at the same time (in a multivariate setting) may bring robustness to the

forecasts – by smoothing some of the noise in each of the series – and also help understand

how differently, if at all, the northern pole of the NAO is affected by regional circulation. The

continent-wide approach taken in Totz et al. [2017] may not yield very precise results for areas
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as small as ours, but it can help shed some light on the dominant NAO state to be expected

for the winter, an additional piece of information to include in the forecasts.

Finally, although we rely here on linear-based forecast models, the relationship between pre-

cipitation and large-scale flow is known to be non-linear [194]. Including a GLM model in this

study was motivated by the fact that it allowed for some degree of non-linearity, and a log-link

fit did show some improvement for the NAO-precipitation relationship (with the Akaike Infor-

mation Criterion slightly smaller than that of a linear regression model, ∆AIC = 3.7). It must

be noted, however, that there is no physical basis for that choice, only statistical considerations.

With such a short reliable record, and lacking advanced predictor selection methods, imple-

menting non-parametric or non-linear forecasting algorithms to represent physical connections

better remains a challenge.

3.8 Conclusion

Forecasting seasonal precipitation from NWMs will remain quite challenging for the foreseeable

future. However, this study shows that a statistical approach, based on a careful identification

and selection of SST predictors, allows for a skillful prediction of the interannual variability

of seasonal precipitation. Early-season precipitation is much less predictable, however, even

with no lead time. The accuracy suggested by the cross-validation is still higher than what

teleconnection signals predicted from the most up-to-date NWMs imply. Despite the short

length of the data record, 35–40% of interannual variability can be captured by a small set

of robustly selected SST indices. The identified predictors are consistent with results from

previous studies [49, 219, 191], and the analysis of composite circulation fields linked to these

further supports the validity of the physical connections to precipitation.

While the proposed approach has demonstrated the potential for advance predictability of Mo-

roccan seasonal precipitation, the results presented in this chapter are but the first step towards

an operational implementation and use of the forecast algorithms. First, from a physical per-

spective, the large spatial variability in seasonal precipitation must still be quantified to better

estimate the risk of local dry or wet conditions. Second, forecasts on their own are worthless

if potential users do not know how to make use of them. Due to the high inter-annual vari-
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ability and the general perceived lack in predictability of precipitation, most water-dependent

actors (industry, water managers, farmers, etc.) in the region have adopted very conservative

approaches to water management, usually assuming the worst (or close to that) to avoid bad

surprises. Consequently, decisions tend to be made quite early in the season (typically over

the summer, often before June), since there is no need to wait for information. This makes

the current decision-making framework quite inflexible, and therefore any operational use of

seasonal forecasts will have to begin by re-thinking how and when decisions are made.
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Chapter 4

The Mediterranean Climate Change

Hotspot

C⃝ AMS 20201

4.1 Introduction

Modifications of regional precipitation patterns will be one of the most critical consequences

of climate change. Whereas theory and models all point to a clear increase in temperatures

under continued emissions of greenhouse gases, there is much less agreement when it comes

to changes in precipitation. Generally, constant or higher precipitation is expected over the

world’s land regions under climate change, except for a few specific regions where models

project robust declines, mostly in the dry subtropics (Fig. 4-1-d). Among these regions, the

Mediterranean Basin (10◦W-40◦E/30-45◦N) stands out due to the magnitude and significance

of its winter precipitation decline. Locally, up to 40% of winter precipitation could be lost

by the end of the 21st century, setting strong limits on water resources that will constrain

the ability of the region to develop and grow food, affecting millions of already water-stressed

1This chapter is an edited and partial reproduction of Tuel and Eltahir (2020) [252] and Tuel et al. (2020b)
[254]. We combined material from the two papers and slightly expanded the discussion in sections 4.5.3 and
4.6.2.

109

��������������������������		�	��	�������������������
���




people and threatening the stability of this tense and complex area.

Located at the border between the arid subtropics and the temperate mid-latitudes, the

Mediterranean basin is characterized by low annual precipitation totals and high inter-annual

variability, which impose a state of semi-permanent water stress across much of North Africa

and the Middle East. Summers are warm and dry, dominated to the east by the influence

of subtropical remote forcing triggered by the Indian monsoon, which cause intense subsi-

dence across the region [213], and to the west by the subtropical high. In winter, however,

the Mediterranean is largely outside the influence of such tropical teleconnections, and storms

and rain are brought by mid-latitude westerlies. Consequently, winter precipitation is key to

the region’s agriculture and economy, with its future of paramount importance for the basin’s

countries. Regional- and local-scale processes, such as land-sea circulations, also play a signif-

icant part in shaping Mediterranean climate variability and climate change [26].

The Mediterranean has long stood out in successive generations of Global Climate Models

(GCMs) as being particularly sensitive to rising concentrations of greenhouse gases. Models

overwhelmingly project, across all scenarios, a large reduction in precipitation, more than in

other land regions in relative terms (Fig. 4-1-b) [101, 59, 195]. A large part of that decline

occurs during winter, south of 40◦N (Fig. 4-1-d), with enhanced drying over northwest Africa

(-30 to -40% in DJF precipitation) and the Eastern Mediterranean (-20 to -25%). In summer,

significant warming and drying is also projected for the northern Mediterranean [35]. While

the large inter-annual variability in wintertime Mediterranean climate makes the significance

of past trends hard to establish [141], precipitation and sea-level pressure in observations and

reanalysis products are in general consistent with those in historical simulations and projec-

tions for the upcoming century (Fig. 4-2-b). The Mediterranean has experienced substantial

drying over the last century, part of which cannot be explained by simple internal variability

[118, 141]. In fact, an unprecedented drought in the Eastern Mediterranean exacerbated the

already tense situation in Syria which led to the outbreak of a civil war [143]. Further drying

will inevitably exacerbate social and geopolitical tensions in this severely water-stressed region.

Changes in the regional low-level circulation have long been suspected to play a dominant

role in the winter Mediterranean drying (e.g., [225, 278, 279, 250, 36]), in particular through

the development of an anomalous surface anticyclone over the Mediterranean basin [226], a
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Figure 4-1: CMIP5 winter (DJF) multi-model mean projected change in (a) worldwide sea-level
pressure (SLP), (c) Mediterranean SLP and 850 hPa winds, and (d) Mediterranean precipi-
tation under RCP8.5 (2071-2100 minus 1976-2005). Historical DJF SLP contours also shown
on (c) (from 1010 to 1024 hPa every 2 hPa; closed contour over North Africa is 1024 hPa).
Dots (a,d) indicate that more than 80% of models agree on the sign of the change. (b) Me-
dian (black) and 90% inter-model spread (gray) of relative change in annual precipitation in
CMIP5 models under RCP8.5 (2071-2100 minus 1976-2005), against annual mean historical
(1976-2005) precipitation, for 25 land regions covering the whole globe [100]. The Mediter-
ranean is highlighted in red. In (a-d), projections have been renormalized by each model’s
global projected temperature change.

striking feature of global climate projections (Fig. 4-1-a,c). This anomalous Mediterranean

ridge extends from roughly November to April and has been consistently present in successive

generations of models [101]. Its magnitude, and that of the associated wind field, is strongly

correlated to the regional precipitation decline across models (Fig. 4-3) [278]. Observed trends
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Figure 4-2: 5-year smoothed median (black line) and range (gray shading) of CMIP5 model
simulations of DJF Mediterranean (a) sea-level pressure (0-30◦E / 32-48◦N) and (b) precipita-
tion (20◦W-40◦E / 30-45◦N) anomalies (map on Figure S1), alongside observations/reanalysis
data from HadSLP2, NOAA 20CR and ERA-20C (in (a)) and GPCP and CRU TS4 v2 (in
(b)).

have up to now been consistent with model projections (Fig. 4-2-a). Giorgi and Lionello (2008)

[101] suggested that the anomalous high may drive the projected drying by increasing atmo-

spheric stability in the region and suppressing Mediterranean cyclones, as discussed in later

studies (e.g., [215, 277]). Subsequently, based on a three-dimensional analysis of the moisture
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budget, Seager et al. (2014) [225] concluded that the Mediterranean precipitation decline was

due to increased moisture divergence by the time-mean flow, due to anomalous anticyclonic

circulation in the region. Zappa et al. (2015a) [278] additionally showed that the inter-model

spread in precipitation change could be well-captured by a simple wind index reflective of the

regional circulation, supporting the idea that future Mediterranean hydroclimate trends are

primarily driven by changes in the regional atmospheric circulation (Fig. 4-3).

Figure 4-3: (a) DJF Mediterranean (20◦W-40◦E/30-45◦N) precipitation against SLP (0-
30◦E/32- 48◦N) anomalies in historical (1976-2005) and RCP8.5 (2071-2100) CMIP5 simu-
lations, and observations (HadSLP2/GPCP, 1979-2017). (b) Change in DJF Mediterranean
precipitation and SLP across CMIP5 models, with 95% confidence intervals and least-squares
best fit. Changes are re-scaled by each model’s projected global temperature change.

Why the anomalous high pressure develops in the first place, however, and how it con-

nects to the robust pattern of the precipitation response remains unclear. Changes in the

large-scale circulation, notably the expansion of the Hadley circulation [160] and the corre-

sponding poleward shift of the North Atlantic storm track [275, 222, 271], the weakening of

the Mediterranean storm track and changes in regional flow regimes [277, 215], have previ-

ously been suggested as driving mechanisms behind Mediterranean circulation trends. More

recently, the role of shifts in Northern Hemisphere stationary waves was shown to modulate

precipitation projections over California [231], and suspected to impact the Mediterranean as
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well [226]. Tuel and Eltahir (2018) [250] also first suggested that the regional warming contrast

between land and sea could play a role. Still, the specific contributions of those mechanisms

to projected Mediterranean climate trends and their spread has not been clearly quantified.

Additionally, the role of Hadley cell and storm track shifts has been challenged as they were

found to occur, in abrupt-CO2 experiments, on a much faster time scale than the Mediter-

ranean drying (He and Soden 2017). The zonal symmetry in Hadley cell shifts is also at odds

with the amplified Mediterranean SLP signal (Fig. 4-1-a), since it is not obvious why the

Mediterranean would be particularly sensitive in climate projections.

Therefore, while much attention has been given to this region, a comprehensive theory

for the wintertime Mediterranean precipitation decline is still lacking. This chapter seeks to

answer the following two questions: what causes the anomalous high pressure over the Mediter-

ranean? and how does regional circulation changes relate to the robust pattern of precipitation

decline? We focus essentially on the winter period (December-to-February, DJF), but also dis-

cuss how identified mechanisms relate to spring and fall trends. In general, modifications to

low-level circulation are governed by two main drivers: changes in the large-scale circulation,

like storm tracks or the Hadley circulation, and changes in land-atmosphere interactions (sur-

face energy budget, for instance). We use here results of simulations from the Coupled Model

Inter-comparison Project phase 5 (CMIP5) and idealized simulations with the MIT Regional

Climate Model to show that both drivers matter for the Mediterranean. Global-scale circula-

tion changes originating near the tropopause, characterized by shifts in stationary waves, and

the independent relative cooling of the Mediterranean Sea relative to the surrounding land, are

found to greatly contribute to the development of the lower-tropospheric anticyclonic anomaly.

Furthermore, we show how that anomaly leads to changes in moisture availability and energy

balance in the Western and Eastern Mediterranean, triggering particularly sharp precipita-

tion declines in these regions. Winter and summer trends are contrasted, as well as causes of

inter-model spread in projections.
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4.2 Data

We analyse recent surface temperature, pressure and precipitation trends in the Mediterranean

region using various datasets. Observed surface temperatures are taken from the NOAA

MLOST [258] (land and ocean, 1850-2018), and the CRU TS4.02 dataset [108] (land only,

1901-2018). Monthly precipitation over land from CRU TS4.02 is also used, and, for ocean

coverage, we consider data from the Global Precipitation Climatology Project version 2.3 [3]

as well (1979-2018). Sea-Surface Temperature (SST) data is taken from HadISST [205] and

ERSST v5 [124]. SLP from the HadSLP2 dataset (1850-2018) is used [7]; for purposes of

comparison, we also look at SLP in the NCEP-NCAR [138], NOAA 20CR [48] and ERA 20c

[197] reanalyses. As estimate of the current climate, we consider the ERA-Interim reanalysis

[55] over the 1979-2018 period. ERA-Interim is based on an atmospheric model and reanalysis

system with a horizontal grid spacing of about 79 km. Here, we perform our calculations with

data archived on a regular 1◦ grid with 17 pressure levels at monthly resolution.

Future climate trends are analysed using thirty Global Climate Models (GCMs) simula-

tions from CMIP5 [241], under the historical and Representative Concentration Pathway 8.5

(RCP8.5) scenarios. We used all CMIP models that provided sea-level pressure (SLP), precip-

itation, surface temperature, and specific humidity, temperature, winds and pressure-velocity

on pressure levels at monthly resolution for our reference (1976-2005) and future (2071-2100)

periods. Ten models from the “Atmospheric Model Inter-comparison Project” (AMIP) [94],

under the "amip" and "amipFuture" scenarios, are also considered. In "amip", the atmosphere

is forced by observed time varying SSTs and sea-ice at present-day atmospheric composition,

while a patterned SST anomaly is added in the "amipFuture" runs (sea-ice and CO2 being

kept the same). The SST pattern is based on the CMIP3 multimodel-mean SST response

to a quadrupling of CO2, where individual CMIP3 model responses are normalised to have a

global-mean 4K warming 2. For runs longer than 30 years, we keep only the last 30 years for

analysis; otherwise, all available years are retained. The "amip" runs are used as reference.

A detailed list of all selected models can be found in Tables 4.1 and 4.2. For each model, in

case more than one ensemble member is available, only the r1i1p1 ensemble member is used.

2Details at https://www.earthsystemcog.org/projects/cfmip/cfmip2-cmip5
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All model output is regridded to a common 1◦x1◦ grid. Unless specified, all changes under

RCP8.5 are defined as the 2071-2100 minus 1976-2005 average, and all anomalies (of SLP,

precipitation, etc.) are defined with respect to the 1976-2005 reference period.
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Name Resolution
Atmosphere Ocean

ACCESS1-0 144 × 192 300 × 360
ACCESS1-3 144 × 192 300 × 360
BCC-CSM1-1-m 160 × 320 232 × 360
BNU-ESM 64 × 128 –
CanESM2 64 × 128 192 × 256
CCSM4 192 × 288 384 × 320
CESM1-CAM5 192 × 288 384 × 320
CMCC-CESM 48 × 96 149 × 182
CMCC-CM 240 × 480 149 × 182
CMCC-CMS 96 × 192 149 × 182
CNRM-CM5 128 × 256 292 × 362
CSIRO-Mk3-6-0 96 × 192 189 × 192
FGOALS-g2 60 × 128 360 × 196
GFDL-ESM2G 90 × 144 210 × 360
GFDL-ESM2M 90 × 144 200 × 360
GISS-E2-R 90 × 144 144 × 90
GISS-E2-R-CC 90 × 144 144 × 90
HadGEM2-AO 144 × 192 216 × 360
HadGEM2-CC 144 × 192 216 × 360
HadGEM2-ES 144 × 192 216 × 360
INM-CM4 120 × 180 340 × 360
IPSL-CM54-LR 96 × 96 149 × 182
IPSL-CM54-MR 143 × 144 149 × 182
MIROC-ESM 64 × 128 192 × 256
MIROC-ESM-CHEM 64 × 128 192 × 256
MPI-ESM-LR 96 × 192 220 × 256
MPI-ESM-MR 96 × 192 404 × 802
MRI-CGCM3 160 × 320 368 × 360
NorESM1-M 96 × 144 384 × 320
NorESM1-ME 96 × 144 384 × 320

Table 4.1: List of selected CMIP5 models. Resolution is in latitude by longitude.
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Name Resolution
Atmosphere Ocean

CanESM2 64 × 128 192 × 256
CCSM4 192 × 288 384 × 320
CNRM-CM5 128 × 256 292 × 362
HadGEM2-A 144 × 192 216 × 360
IPSL-CM54-LR 96 × 96 149 × 182
IPSL-CM5B-LR 143 × 144 149 × 182
MIROC5 64 × 128 192 × 256
MPI-ESM-LR 96 × 192 220 × 256
MPI-ESM-MR 96 × 192 404 × 802
MRI-CGCM3 160 × 320 368 × 360

Table 4.2: List of selected AMIP models. Resolution is in latitude by longitude.

4.3 Large-scale dynamics and planetary wave shifts

4.3.1 Changes in stationary planetary waves

Wintertime mid-latitude flow in the Northern Hemisphere is strongly modulated by atmo-

spheric stationary waves, which arise from orographic and atmospheric diabatic forcing, land-

sea thermal contrasts, as well as transient eddy heat and momentum fluxes [122, 113]. Sta-

tionary waves exhibit wavelengths ranging roughly from a few thousand to twenty thousand

kilometers, and generate large-scale variations in the atmospheric circulation, leading to large

longitudinal asymmetries in the distribution of temperature and precipitation. Global climate

models robustly agree on the pattern of change in upper-tropospheric wintertime circulation

in the Northern Hemisphere [231, 269], consisting of a strengthened jet stream and alternating

cyclonic and anticyclonic circulation anomalies between 20◦ and 60◦N. The magnitude of the

projected circulation change for the 2071-2100 period is substantial, reaching up to 30% of

historical values. The acceleration of the jet stream follows from the thermal wind balance
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response to the increase in the equator-to-pole temperature gradient at upper levels, itself

a consequence of enhanced warming in the middle and upper tropical troposphere and less

warming in the upper troposphere at higher latitudes [208]. Given that the structure and

amplitude of stationary waves is very dependent on the strength of the jet stream, changes in

zonal and meridional winds are strongly related. The pattern of change in upper-tropospheric

meridional winds can be understood from simple theoretical arguments [231]. Linear theory

of barotropic Rossby waves on a zonal-mean zonal flow u0 away from sources states that the

total wavenumber for stationary waves is given by

K =
√
k2 + l2 =

√
β − ∂2u0

∂y2

u0
(4.1)

where k and l are the zonal and meridional wavenumber, respectively (e.g., [121]). In the

current climate, stationary waves with non-dimensional zonal wavenumbers smaller than 7 are

largely prevalent [231]. As u0 increases, K must decrease. Assuming unchanged l, the zonal

wavenumber must also decrease, which leads to an increase in the wave- length of stationary

waves. Because the wave sources are mainly tied to the Earth’s topography and are therefore

largely fixed in space, the change in wavenumber translates into a change in wave phase

downstream from sources, where stationary waves extend further eastward in future climate

projections (Fig. 4-4-a).

Meridional wind changes are somewhat stronger and more robust over North America than

the Mediterranean, yet overall there is a pronounced zonal symmetry in the pattern of upper-

tropospheric circulation change (Fig. 4-4-b). A direct consequence of the eastward shift is the

development of an anomalous upper-level anticyclonic circulation over the Mediterranean. This

anomalous pattern is also expected at lower levels due to the generally equivalent barotropic

nature of winter stationary waves [112, 113]. The wave-like pattern is indeed still present

at the 850 hPa level, but does not follow a simple dampening of the 300 hPa pattern. The

largest circulation changes are now found over the Mediterranean and off the coast of North

America, whereas meridional wind anomalies are quite weak over the tropical Atlantic, the

Gulf of Mexico or the Arabian Peninsula. While there is clearly an overall equivalent barotropic
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Figure 4-4: (a) CMIP5 multi-model mean 300 hPa meridional winds in the historical and
RCP8.5 scenarios, averaged between 20◦ and 50◦N. See Simpson et al., figures 1 and 4 [231].
(b-c) CMIP5 multi-model mean projected change in DJF meridional winds at (b) 300 hPa
and (c) 850 hPa. For each model, projections were normalized by its mean annual global
temperature change to roughly account for differences in climate sensitivity across models.
Dots indicate that more than 80% of models agree on the sign of the change.

structure over the North Atlantic, Pacific and the Mediterranean, the pattern appears more

baroclinic over Asia and North America.

Significant longitudinal variations in the vertical structure of Northern hemisphere winter

circulation have been documented by Blackmon et al (1979) [21]. They found that over the

central and eastern parts of the Atlantic and Pacific oceans, and Western Europe, the vertical

mode is highly barotropic with strong vertical coherence. On the other hand, North America

and Asia are characterized by a more baroclinic structure with little coherence between low-

and upper-level fluctuations. It follows from this observation that lower-tropospheric flow over

the large continental masses should be much less sensitive to stationary circulation changes
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than over oceans, which is quite consistent with the comparison between 300 and 850 hPa

meridional wind changes. To find the physical cause of this empirical finding, we turn to linear

theory of mid-latitude dynamics.

4.3.2 The external mode

For atmospheric conditions typically prevailing in the mid-latitudes, there exists a single

trapped vertical mode for Rossby waves propagating on a mean westerly zonal flow with

vertical shear, referred to as the external mode [112]. Since this mode therefore connects the

upper- and lower-tropospheric circulation, differences in the surface response to similar high-

level circulation anomalies should be partly related to variability in the external mode itself.

A lack of vertical coherence of the stationary circulation could also locally relate to vertically

propagating Rossby waves over regions of topography, but here we focus on the structure of

the external mode since it should be an important factor over all land regions as well as over

ocean.

The vertical structure of the external mode can be calculated by solving the stationary quasi-

geostrophic potential vorticity and thermodynamic equations on a beta-plane of infinite zonal

extent, linearized about a mean zonal flow ū(p), between the surface and the 50 hPa level:

∂q

∂t
+ ū

∂q

∂x
+
∂ψ

∂x

(
β − ∂

∂p

(
f 2

σ

∂ū

∂p

))
= 0 (4.2)

where q = ∆ψ + ∂
∂p

(
f2

σ
∂ψ
∂p

)
is the anomalous quasi-geostrophic potential vorticity, ψ is the

anomalous stream function, f is the Coriolis parameter, β is its meridional gradient, ω = Dp
Dt

and σ = −RT
p

d log(θ)
dp is the static stability parameter. At the surface and at 50 hPa, we obtain

boundary conditions from the thermodynamic equation

(
∂

∂t
+ ū

∂

∂x

)
∂ψ

∂p
− ∂ψ

∂x

∂ū

∂p
= −σω

f
(4.3)

by enforcing ω = 0. Looking for stationary solutions of the form ψ(x, y, p) = Re
[
ψ̂(p)ei(kx+ly)

]
,
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equations (4.2-4.3) become

1

ū
(ūΓ+ β − Γū) ψ̂ = K2ψ̂ (4.4)

where Γ = ∂
∂p

(
f2

σ
∂
∂p

)
and K2 = k2 + l2, and equation 4.3 becomes

ū
dψ̂

dp
=

dū

dp
ψ̂ (4.5)

Equations (4.4-4.5) form an eigenvalue problem with eigenvalue K2, and the eigenvector

associated with the most positive eigenvalue corresponds to the external mode. Solutions to

(4.4-4.5) are computed numerically using centered finite differences in pressure. We checked

that a single positive mode (K > 0) was always found, although setting the lid at a higher

level (pressure below 50 hPa) sometimes yields additional spurious modes as discussed in Held

et al. (1985) [112]. We normalize the external mode by its value at 300 hPa which is usually

close to the level where it reaches its maximum amplitude.

The external mode is conventionally computed at a given latitude from zonal- and time-mean

wind and temperature data [112]. Here, however, we are particularly interested in the vari-

ability of the external mode with longitude, and as noted in the introduction to Held et al.

(1985) it is possible to define a zonally localized external mode if the time-mean flow is suffi-

ciently slowly varying in longitude. Therefore, we calculate the DJF external mode along the

40◦N latitude circle, for ERA-Interim data and each CMIP5/AMIP model in the two corre-

sponding scenarios, by averaging atmospheric data between 35◦N and 45◦N and then taking a

running mean over 60-degree longitude intervals. We choose a 60-degree width as a compro-

mise between a width large enough to correctly represent the mean state across the stationary

wave length that dominates the climate-change response (waves with non-dimensional zonal

wavenumber 5 account for most of the projected 300 hPa meridional wind change [231], Fig.

4-4) and a width small enough to capture zonal variability in the mean state. Subsurface

values are discarded based on each model’s mean surface pressure; for each 60-degree interval,

the surface level used in (4.4) is chosen as the highest pressure level with at least 50% of valid

data. We refer to the zonally-varying external mode as ψ̂(p,λ) where λ is longitude. For
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comparison, we also calculate the external mode using zonally-averaged fields, and refer to it

as ψ̂0(p).

The external mode allows us to estimate the near-surface component of the stationary wave

response using only as input the flow response in the upper troposphere. We compute es-

timates of the 850 hPa meridional wind change at 40◦N (35-45◦N average) in the RCP8.5

(for CMIP) and "amipFuture" (for AMIP) scenarios by multiplying, at each longitude, the

mean 300 hPa meridional wind by the external mode component at 850 hPa, and taking the

difference between the two scenarios. So, for CMIP models, this corresponds to:

∆v850est (λ) = ψ̂850
RCP8.5(λ)v

300
RCP8.5(λ)− ψ̂850

hist(λ)v
300
hist(λ) (4.6)

where historical values are averaged over the 1976-2005 period and RCP8.5 values over the

2071-2100 period. Using only the historical external mode leads to local differences of less

than 5%, and therefore differences in external mode amplitudes between scenarios is of minor

importance in our problem.

4.3.3 Results

Zonal variability of the external mode is shown on Fig. 4-5-a. Consistent with the findings

of Blackmon et al. (1979), the structure of the external mode exhibits a substantial zonal

variability. Eastern ocean basins and western continental margins are characterized by much

stronger vertical coherence, with larger amplitudes in the lower troposphere, than continents.

In particular, the external mode amplitude at 850 hPa is maximal over the Western Mediter-

ranean (≈ 0.43 when averaged over 10◦W-0◦ in ERA-Interim). Over western North America

(125◦W-115◦E), that amplitude is only 0.32.

The variations with longitude in Fig. 4-5-a essentially reflect the variability in the vertical

structure of the zonal wind profile. Indeed, estimates of the vertical mode based on zonal-

mean static stability values show little difference with the values in Fig. 4-5-a. The external

mode tends to have similar vertical structure as the mean zonal wind [113], and thus the ex-
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Figure 4-5: (a) Value of the DJF external mode at 850hPa and 40◦N as a function of longitude
(normalized by its 300 hPa value): CMIP5 median (black), 95% range (light blue shading)
and ERA-Interim (blue). The external mode is normalized so that it is equal to 1 at 300hPa.
(b) CMIP5 multi-model mean DJF meridional wind change (35-45◦N average) at 300 hPa
(black), 850 hPa (red), the estimate based on the external mode structure (solid blue) and
the estimate based on the zonal-mean external mode (dashed blue). In both panels, the
Mediterranean region (15◦W-40◦E) is highlighted in light gray.

ternal mode is more barotropic the smaller the vertical shear of the mean zonal wind. This

vertical shear is strongest on the western side of ocean basins and adjacent land in the storm

track entrance regions (corresponding to a weak external mode at 850hPa) and weakest on the

eastern side of ocean basins and adjacent land (corresponding to a strong external mode at

850hPa). Differences in friction between land and ocean can also affect the vertical structure

of the mean zonal wind and thus the zonal variability of the external mode. In particular, the

Mediterranean has relatively weak wind shear and a strong external mode at 850hPa since in

winter it lies to the east of the North Atlantic jet and to the north of the subtropical jet over

Africa (see e.g. Fig. 1b of Harnik et al. (2014) [107]). In the Pacific storm track, between
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135◦E and 135◦W, large 300 hPa winds and weak near-surface winds generate strong shear,

resulting in a smaller 850hPa external mode magnitude compared to the North Atlantic.

It is interesting to notice from Fig. 4-5-a, however, that although the external mode ampli-

tude is generally well-reproduced in models, across the 40◦N latitude circle, the single area of

significant discrepancy is the Central and Eastern Mediterranean, up to the beginning of the

Central Asian mountain chains (10-55◦E). There, models almost systematically overestimate

the low-level external mode amplitude, on average by 40%. This suggests that, even if the

upper-level circulation change projected by models is realized, the regional surface circulation

response will be weaker than in model projections. In addition, inter-model scatter in external

mode magnitude in this region is much larger than elsewhere, which may point to differences

in the resolution of orography and in the effect of orography on the large-scale flow. The

overestimation of the external mode component over the Eastern Mediterranean seems related

to a large underestimation of zonal wind shear by GCMs over northern Africa and the Middle

East, along the northern border of the North Africa jet (Fig. 4-6). Weaker shear is consistent

with an overestimation of external mode magnitude at low levels, although biases in mean 300

hPa zonal wind may also matter (see equation (4.4)).

Figure 4-6: (a) DJF Mediterranean mean vertical wind shear, from ERA-Interim. (b) CMIP5
multimodel-mean bias in DJF Mediterranean vertical wind shear. (c) Bias in vertical wind
shear over the southeastern Mediterranean region (20-50◦E/30-40◦N, see rectangle in (b))
against bias in Eastern Mediterranean (16-46◦E) external mode magnitude at 40◦N across
CMIP5 models. The best-fit linear regression line is shown in dashed black. In (a-c), vertical
wind shear is defined as 300 hPa minus 850 hPa zonal wind.

This zonal variability has important implications for the low-level response. Fig. 4-5-b

shows the two estimates of the 850 hPa meridional wind change, using either the zonally-
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varying or the constant external mode, averaged across all models. Generally, the two estimates

are very consistent with the 300 hPa model response. The magnitude of the 850 hPa change is

correctly captured, even with the zonal-mean external mode, except over the Mediterranean.

In the Western Mediterranean, the peak in 850 hPa external mode amplitude coincides with

a peak in 300 hPa meridional wind change, so that it is necessary to use the local external

mode value to account for the full magnitude of the 850 hPa wind change. The Western

Mediterranean is the only region where this coincidence occurs – near all the other peaks in

the 300 hPa series, the local external mode value is close to its zonal average, so that the two

estimates do not differ significantly. In the Eastern Mediterranean, both estimates account for

only half or so of the observed wind change in models (the difference is, on average, 0.3 m/s).

In addition to the multi-model mean, inter-model spread is also well explained by this approach.

Fig. 4-7 shows the values of the local external mode-based estimate of 850 hPa wind change

against those given by models. We consider both the average and the maximum change. There

is excellent agreement in both cases, although for models falling at the extremes the external-

mode based estimate tends to underestimate the wind response, particularly in the Eastern

Mediterranean (see the next section). The larger changes found in the AMIP simulations are

also well accounted for by this method, i.e. they mainly result from larger circulation changes

in the upper-troposphere in AMIP simulations. Differences in external mode magnitude across

models are found to play no role in the spread of 850 hPa meridional wind projections, which

is almost exclusively dictated by the scatter in upper-tropospheric trends.

This analysis can be repeated on a monthly basis to assess the role of large-scale stationary

wave shifts on near-surface Mediterranean dynamics. Figure 4-8 shows results obtained when

calculating the external mode for each month of the year and estimating the 850 hPa meridional

wind change based on that external mode and 300 hPa meridional wind trends. The connection

between near-surface and upper-tropospheric changes peaks in January, at the same time as

stationary wave activity in the Northern Hemisphere [113, 269]. Significant correlations are

found between October and April, which suggest that our argument applies to dynamical

Mediterranean trends both in the second half of fall and the first half of spring, when GCMs

still project anticyclonic anomalies over the Mediterranean.
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Figure 4-7: 850 hPa meridional wind change (35-45◦N average) in the Western (15◦W-15◦E,
blue) and Eastern (16-46◦E, orange) Mediterranean in CMIP5 (circles) and AMIP (crosses)
models. The changes estimated through the external mode (equation 4.6) are plotted versus
the changes in the models. Panel (a) shows wind values averaged over the respective intervals,
while (b) shows the maximum values in those intervals.
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Figure 4-8: Annual cycle of monthly inter-model correlation (blue) and root mean-square
error (black) between CMIP5 850 hPa meridional wind change and the external-mode based
estimate, for (a) the Western (15◦W-15◦E) and (b) the Eastern (16-46◦E) Mediterranean. Blue
whiskers indicate 95% confidence intervals for the correlation coefficients.
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4.4 Quantifying the SLP response to upper-level circula-

tion change

The upper-level anticyclonic anomaly over the Mediterranean that results from robust shifts in

the winter stationary circulation therefore translates into an anticyclonic anomaly at low levels,

and therefore higher pressure. Quantifying the SLP anomaly associated with the projected

low-level ridge is not straightforward, in particular because SLP is also determined by surface

friction, whose parametrization differs between GCMs. One possibility would be to remain at

low levels (850 hPa), away from the surface, and estimate the geopotential gradient needed to

balance geostrophically the projected anomalous wind field. Here, we take a different approach,

purely empirical, based on identifying circulation analogues and reconstructing associated

SLP fields. This method allows us to infer SLP directly, for any GCM, without the need

to consider resolution, topography or friction. We show that, consistent with the theoretical

results discussed above, the projected shift in upper-level circulation over the coming decades

(Fig. 4-4) does lead to an enhanced SLP response over the Mediterranean compared to regions

at the same latitude, but fails to explain the full magnitude of GCM projections under RCP8.5.

4.4.1 Methods

To quantify the impact of trends in upper-tropospheric flow on Mediterranean low-level cir-

culation, we apply to each selected GCM an analogue-based "dynamical adjustment" model.

We give here a brief overview of the method presented in Deser et al. (2016) [58] and refer to

their paper for further mathematical details. We consider two physical fields, a predictor field

X ∈ Rp, and a predictand field Y ∈ Rq, linked by some physical relationship (variability in X

influences variability in Y). p, q refer to the space dimension. We assume that a "training"

series of concurrent values of X and Y, of length n, is available, which we note (Xi)0≤i≤n

and (Yi)0≤i≤n. The goal of dynamical adjustment is to estimate the amplitude of the field Yt

associated with the predictor field Xt, observed at a time t > n. To that end, we select the

N = 50 closest analogues of field Xt among the (Xi)0≤i≤n, with Euclidean distance used as

the metric. Among these N fields, we randomly select a subsample of M = 30 fields, which
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are assembled in a p×M matrix Xc. The corresponding Y values are similarly put in matrix

Yc. Then, optimal linear combination weights β are estimated such that

Xt ≈ βXc (4.7)

βXc represents a "constructed analogue" of Xt. Finally, the same weights β are applied to Yc

to estimate the component of Yt induced by predictor Xt: Ŷt = βYc. The procedure is then

repeated 1000 times, each time with a new random subsample of 30 analogues. The purpose

of this subsampling is to increase robustness of the results and better quantify the variability

in the reconstructed estimates [58]. The results are not particularly sensitive to the specific

choice of N and M , over the range 30 ≤ N ≤ 60 and M ≈ 2N
3 .

The method is applied to each GCM separately, using for X the DJF meridional wind field

anomalies at 200 hPa in the 20-80◦N latitude range, and for Y the Northern Hemisphere

DJF SLP anomaly field. Seasonal anomalies are computed by subtracting from each field its

1976-2005 mean. The historical (1850-2005) simulations are used as "training" series (thus

n=155 winters), and we calculate constructed analogues for all winters between 2070 and

2100. Our choice of predictor is motivated by the results of Simpson et al. (2016) [231], which

implied that projected upper-level meridional wind anomalies were reflective of the shifts in

mean stationary wave structure. Results are not significantly different when using the zonal

wind component, or even the stream function, since upper-tropospheric flow is essentially non-

divergent at seasonal timescales.

An important assumption of this approach is that, at first order at least, the surface circula-

tion response to upper-level wind pattern change is linear. To test that hypothesis, we also

reconstruct annual SLP anomalies in the historical runs: for each of the 155 winters in 1850-

2005, the other 154 winters are used to look for analogues. This helps determine whether

inter-annual variability of Mediterranean SLP is correctly reconstructed in both historical and

future simulations.
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4.4.2 Results

Figure 4-9: CMIP5 multi-model mean best

fit linear slope of target-vs-reconstructed DJF

SLP. Dots indicate 1% sifnificsance of the cor-

responding correlation coefficient.

Most of the year-to-year variability in DJF

Mediterranean SLP is well reconstructed

based on upper-tropospheric flow anomalies,

in both historical and RCP8.5 runs (Fig.

4-10-c). The model-mean squared correla-

tion coefficient is about 0.75 for each sce-

nario (model range is 0.55-0.85), and the

average root mean square error is 1.2 hPa

(model range 0.95-1.5 hPa). SLP anomalies

are correctly approximated over the whole

range of inter-annual variability; only very

low SLP values seems to be slightly overes-

timated. Over the Northern hemisphere, we

find that SLP reconstructions from upper-

tropospheric circulation are valid only over

the ocean basins, and particularly on their

western margins, consistent with the differ-

ence in wind shear between the eastern and

western margins mentioned above. Despite

the mean shift towards positive Mediterranean SLP anomalies in future projections, the range

of values of RCP8.5 anomalies is not substantially different from historical ones. This in-

creases our confidence that the method will correctly capture shifts in the distribution of SLP

anomalies connected to projected changes in upper-level wind fields.

Looking ahead, we find that future upper-tropospheric wind patterns are consistent with

an amplified SLP response over the Mediterranean, and also east of Japan (Fig. 4-10-a,b).

They also account for 80% of inter-model spread in Mediterranean projections (Fig. 4-10-d),

in keeping with the external mode analysis which highlighted upper-tropospheric trends as

the major contributor to uncertainties in low-level circulation projections. The decrease in
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Figure 4-10: Northern Hemisphere CMIP5 multi-model mean change in DJF SLP (a) estimated
by dynamical adjustment, and (b) projected by CMIP5 models. Stippling shows agreement
on the sign of the change by 80% of models. Numbers indicate average value within the
box (dashed). (c) Model vs. dynamically-reconstructed DJF Mediterranean (0-30◦E/32-48◦N)
SLP anomalies in historical (black) and RCP8.5 (red) simulations, for all 30 CMIP5 models.
(d) Mediterranean (0-30◦E/32-48◦N) CMIP5 inter-model change in DJF SLP estimated by the
dynamical adjustment model along with 90% confidence intervals. The two models used in
Brogli et al. (2019) are highlighted in red (see also section 4.7.3).

131

��������������������������		�	��	�������������������
���




SLP over the North Pacific is also approximated, but not so much over North America, the

North Atlantic and Siberia, where other factors, notably linked to thermodynamic forcing

(e.g., Arctic amplification, North Atlantic Warming Hole) likely play a role [95]. However,

only 40% of the mean GCM response is accounted for (0.7 hPa compared to 1.7 hPa in the

multi-model mean). Similarly, during the "extended" winter season, outside of DJF, future

upper-tropospheric circulation anomalies are still connected to an increase in SLP over the

Mediterranean, but only explain about 30-40% of the whole signal.

Figure 4-11: Northern Hemisphere CMIP5 multi-model mean change in (a,b) November and
(c,d) March-April SLP (a,c) estimated by dynamical adjustment, and (b,d) projected by
CMIP5 models. Stippling shows agreement on the sign of the change by 80% of models.
Numbers indicate average value within the box (dashed).
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4.5 Surface thermodynamical forcing

Trends in the large-scale circulation therefore do not seem to fully account for projected 21st

century low-level dynamical trends over the Mediterranean. We now turn to the surface and

investigate whether changes in surface-atmosphere interaction terms may explain the rest.

The geography of the Mediterranean Basin is quite unique, characterized by the existence of

a large sea enclosed by continents on almost all sides. During winter, due to water’s larger

thermal capacity, the Mediterranean Sea is on average warmer than the surrounding land.

However, due to enhanced warming over land under climate change [239, 39], future climate

projections exhibit a robust and gradual relative cooling of the Mediterranean Sea with respect

to surrounding land (Fig. 4-12-a). We define a simple sea-land temperature difference index as

the difference between mean DJF temperatures over sea and over land in the Mediterranean

region (5◦W-38◦E/28◦-48◦N, Fig. 4-12-a). In historical CMIP5 simulations and ERA-Interim,

that difference reaches about 5◦C; by 2100, RCP8.5 simulations project a 0.5◦C decrease, with

little spread across models (Fig. 4-12-b). Th magnitude of the projected index change is

similar to its historical inter-annual standard deviation, suggesting a potentially important

role of sea-land temperature change in shaping future regional circulation. Up to now, the

projected decrease has been consistent with a range of observational datasets (Fig. 4-12-c).

The impact of surface SST anomalies on regional circulations has been investigated, both from

a theoretical perspective [122] and in model projections for the coming century (e.g., [95]).

At leading order, using geostrophic balance, a shallow relative cooling over the Mediterranean

should result in anomalous surface anticyclonic circulation, since the land-sea warming contrast

disappears in the mid-troposphere [38]. Linear theory similarly suggests a baroclinic response

to a Mediterranean negative SST anomaly characterised by a downstream SLP high [122]. A

similar result has been obtained while investigating the atmospheric response to the relative

cooling of the North Atlantic Warming Hole in a realistic model [95].

4.5.1 Model simulations

We investigate the impact of the land-sea warming contrast on Mediterranean circulation

using regional climate simulations with the Massachusetts Institute of Technology (MIT) Re-
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Figure 4-12: (a) CMIP5 multi-model DJF 2-meter temperature change under RCP8.5 (2071-
2100 minus 1976-2100). The box encompasses the area used to calculate the sea-land tempera-
ture index. (b) Distribution of historical (black) and RCP8.5 (red) DJF sea-land temperature
index anomalies across CMIP5 models. (c) 5-year smoothed median value (black line) and
range (gray shading) of CMIP5 model annual values (1850-2095) of DJF sea-land tempera-
ture index anomalies, alongside observations from CRU, NOAA Global Surface Temperature,
ERSST and HadISST. In panel (c) only, the temperature index is defined using SST over
the sea, not 2-meter temperature, since the latter has limited availability over sea areas in
observations.

gional Climate Model (MRCM). MRCM is based on the Abdus Salam International Centre

for Theoretical Physics Regional Climate Model Version 3 (RegCM3) [187], and includes sev-

eral improvements [270, 98, 96, 97] achieved through incorporation of new physical schemes or

modification of original schemes. MRCM has been rigorously tested against observations, in its

ability to simulate key observed climate features, across several regions (e.g., North America
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[270], West Africa [131], the Maritime Continent [130] and Southwest Asia [186]).

We conduct two sets of simulations to assess the impact of the Mediterranean relative cool-

ing over a domain that encompasses the whole Mediterranean and Black seas (Fig. 4-14),

at a horizontal resolution of 35 km and using 40 vertical levels. The first set is driven by

the 1.5◦x1.5◦ 6-hourly ERA-Interim reanalysis [55] as lateral boundary conditions and 1◦x1◦

weekly NOAA OISST v2 [206] for the ocean surface, over the 1981-2011 period. In the second,

we use the MPI-ESM-MR model [276] under the RCP8.5 scenario as boundary conditions, over

the 2070-2100 period. The MPI experiments are intended to assess the impact of a relative

Mediterranean cooling in a climate change context as surrounding continents warm. Still, any

GCM presents a number of biases in its background climate, which may modulate the impact

of the relative cooling. The ERA experiments thus allow us to assess the circulation impact

of a relative cooling in the current Mediterranean climate, with no land warming.

Each set consists of a reference simulation (“0C") and a perturbed simulation ("+1.5C"),

in which Mediterranean SSTs are artificially increased by 1.5◦C. The essence of the "+1.5C"

simulations is to force the Mediterranean to warm as much as if it were land. We choose an

SST difference of 1.5◦C because it translates in the simulations into a 0.5-0.6◦C change in the

sea-land temperature index, consistent with the shift projected by CMIP5 models (Fig. 4-12

and Fig. 4-13). The difference between the reference and the perturbed simulations ("0C"

minus "+1.5C") corresponds to the impact of the relative Mediterranean cooling on regional

circulation. The first set of simulations is referred to as "ERA" ("ERA0C" and "ERA+1.5C"),

and the second as "MPI" ("MPI0C" and "MPI+1.5C"). In all simulations, the first year is

discarded as spin-up. Long-term averages are computed over 1982-2011 for ERA and 2071-2100

for MPI experiments.
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4.5.2 Results

Figure 4-13: Annual cycles of sea-land tem-

perature index difference between "0C" and

"+1.5C" experiments, for ERA and MPI ex-

periments combines. Boxes represent the 50%

inter-annual range, and whiskers the full range

of inter-annual variability. "Sea" and "land"

values are defined by the box on Figure 4-12-a.

The corresponding cycle for the CMIP5 multi-

model mean is shown by the dashed red line.

Compared to the +1.5C experiments, the 0C

experiments exhibit a roughly 0.6◦C relative

cooling of the sea-land temperature index

(0.62◦C for ERA and 0.57◦C for MPI, Fig.

S4). The magnitude and spatial pattern of

this relative cooling is similar to that pro-

jected by CMIP5 models (Fig. 4-14). Fig.

4-16 shows the difference, between the two

experiments (0C minus +1.5C), in mean DJF

SLP, 850 hPa wind and precipitation fields

over our simulation domain. Compared to

+1.5C, the 0C simulations exhibit a sub-

stantial anticyclonic flow in the boundary

layer with a strong anomalous ridge gener-

ally located downstream of the SST anomaly.

Both anticyclonic anomalies are accompanied

by anomalous easterlies and north-easterlies

over North Africa and the Middle East, of

about 0.5 m/s magnitude, and a much weaker

circulation response to the north. The pat-

tern of the wind response south of 40◦N is

similar to that of the CMIP5 multi-model mean under RCP8.5, especially for the ERA exper-

iments, even if of smaller magnitude (see Fig. 4-1-c, noting that wind change is normalized

by global temperature change, i.e. divided by a factor of ≈4). The relative Mediterranean

cooling is also associated with a pronounced regional precipitation decline (Fig. 4-16-b,d). In

absolute terms, this decline is strongest over the eastern half of the basin, particularly along

the Turkish and Middle Eastern coastline. Precipitation is less impacted west of 10◦E, except

along the Algerian coastline.
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Figure 4-14: (a) Difference in DJF mean 2-meter temperature between the "0C" and "+1.5C"
experiments (average of ERA and MPI simulations). (b) Change in DJF 2-meter temperature
under RCP8.5 (2071-2100 minus 1976-2005), to which the average Mediterranean land warming
(3.9K) was subtracted to highlight the relative cooling over the sea.

Figure 4-15: (a) Annual cycle of monthly Mediterranean (0-30◦E/32-48◦N) SLP change under
RCP8.5 (2071-2100 minus 1976-2005) across CMIP5 models. (b) Annual cycle of monthly
difference in Mediterranean SLP between the "0C" and "+1.5C" experiments ("0C" minus
"+1.5C"), ERA and MPI combined. In both panels, boxes represent the 50% range and
whiskers extend to the full range of values, across all GCMs (in (a)) and all simulation years
(in (b)). Median values are shown by thick blue lines.

The main difference between the ERA and MPI simulations is the location of the anomalous

high. It is centered south of Greece and peaks at about 1.1 hPa in ERA, whereas it is slightly

weaker (≈1 hPa) and shifted south-east in the MPI experiment (Fig. 4-16-a,c). Averaging
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over the 0-30◦E / 32-48◦N domain, we find a 0.76 hPa SLP difference between ERA0C and

ERA+1.5C, and 0.62 hPa between MPI0C and MPI+1.5C. Additionally, the baroclinicity of

the response is much more pronounced in the MPI simulations. However, the background cli-

mates in the two reference (0C) simulations are different, notably the low-level zonal wind and

static stability (Fig. S5). Those two fields are critical in determining the atmospheric circula-

tion response to shallow heating anomalies in the mid-latitudes [122, 106]. The MPI reference

state displays a slightly larger static stability over the Mediterranean and a stronger zonal wind

field, both of which are consistent with a weaker circulation response to the imposed surface

temperature anomaly in the MPI experiments. A larger static stability limits the expansion

of the heating anomaly in the lower troposphere, while the enhanced zonal wind reduces the

circulation response required to compensate for the heating anomaly [122]. Furthermore, the

MPI simulations also include long-term, circulation trends induced by greenhouse gas forcing.

Despite this, the circulation and precipitation responses to the relative cooling are very sim-

ilar between ERA and MPI. This points towards a robust anticyclonic circulation response

triggered by the relative Mediterranean cooling.

4.5.3 Contrasting winter and summer

Reduced rates of warming over oceans are a year-round feature in future simulations [39].

Therefore, the Mediterranean relative SST cooling occurs in all seasons and not only winter.

However, GCM projections for summer clearly show a robust decrease rather than an increase

in Mediterranean SLP [101] (Fig. 4-15). Our regional simulations also clearly show that, al-

though the relative SST cooling is applied year-round, the dynamical response is concentrated

between October and April, with a negligible SLP signal in summer (Figs. 4-15,4-17). This

raises the question of why the winter circulation might be more sensitive to surface thermo-

dynamic forcing than the summer one.

Fig. 4-17 shows the mean SLP and 850 hPa wind difference between the perturbed ("+1.5C")

and the reference ("0C") simulations (which represents the impact of the relative sea cooling)

for winter (DJF) and summer (JJA), averaged for the two sets of simulations (ERA and MPI).

First, the winter circulation response to relative SST cooling is evidently much larger than
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Figure 4-16: Difference in DJF (a,c) SLP and 850 hPa winds and (b,d) precipitation between
the +1.5C and 0C experiments (0C minus 1.5C) in the (a,b) ERA and (c,d) MPI simulations.

the summer one: though SLP tends to increase in both seasons, the increase during winter is

about 3.5 times larger than during summer (Fig. 4-17-a,c). Additionally, the winter response

consists of a well-defined anticyclonic anomaly centered south of Greece, while in summer, the

SLP change exhibits a more uniform increase over the Mediterranean. The associated circu-

lation response is everywhere negligible. For further analysis, we look at the temperature and

circulation response on pressure levels (Fig. 4-17-b,d). The striking difference is that during

winter, the relative cooling extends much higher into the lower troposphere (up to 850 hPa,

and even weakly above that) than in summer, when it is confined to the very lowest model

level. As expected, there is little to no circulation response below 800 hPa in summer, whereas
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at these levels in winter there is significant divergence and weak descent.

Figure 4-17: Difference in (a,c) SLP and 850 hPa wind, and (b,d) zonally-averaged (0-40◦E)
air temperature, meridional wind and pressure velocity, between the "0C" and "+1.5C" sim-
ulations ("0C" minus "+1.5C", average of ERA and MPI runs), for winter (DJF, a-b) and
summer (JJA, c-d). In (b,d), circulation vectors are scaled such that 1 horizontal unit = 1
m/s; 1 vertical unit = 0.2 hPa/h.

140

��������������������������		�	��	�������������������
���




Figure 4-18: Annual cycle of 925 hPa

Mediterranean-average (10◦W-45◦E/30-45◦N)

static stability, from ERA-Interim (1979-2018).

Boxes represent the 50% range over the 40 years

of data, and whiskers show the full range.

To determine why the winter circulation

is more sensitive to relative SST cooling, we

now turn to near-surface static stability σ.

Its annual cycle at 925 hPa averaged over the

Mediterranean Sea is shown on Fig. 4-18-a.

There is a strong winter/summer contrast,

with static stability twice as large in sum-

mer than in winter. This seasonal contrast is

consistent with the smaller amplitude of the

annual cycle of SSTs compared to low-level

air temperature. In winter, SSTs and near-

surface air are warmer than overlying air lay-

ers, which is conducive to low static stability,

also translated into enhanced lightning fre-

quency [148], while in summer the situation

is reversed: relatively cooler SSTs are associ-

ated with enhanced static stability. The large summer static stability prevents communication

of the relative cooling to levels higher than the near-surface.

It is important to put this analysis in the context of the regional circulation. The latter is

dominated during summer by the large-scale descent forced by the Indian monsoon to the

east [213], which contributes to enhanced static stability of the whole air column, not just the

lower levels. There is no such forced signal during winter: the area of strong descent near the

regional Hadley cell edge is over the Sahara Desert, well to the south of the Mediterranean

(Fig. 4-19). Therefore, the Mediterranean Sea is located enough to the north of the Hadley

cell such that the warm SSTs can trigger large-scale ascent over the sea, a striking feature

of the vertical circulation (Fig. 4-19-a). This large-scale ascent during winter in turn helps

propagate the cooling anomaly upwards into the troposphere in our simulations, whereas it

remains confined near the surface during summer (Fig. 4-17-b,d). The combination of the

descent and large static stability in summer explains why there is no associated anomalous

circulation above the surface since there is no heating anomaly to compensate [122].
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Figure 4-19: Mediterranean (10◦W-45◦E) zonal-mean DJF (a) and JJA (b) vertical and merid-
ional circulation: vertical velocity (shaded) and wind in the meridional-pressure plane (arrows),
in ERA-Interim (1979-2018). Circulation vectors are scaled such that 1 horizontal unit = 3
m/s; 1 vertical unit = 1 hPa/h.

4.6 Precipitation response

The consequence of the development of the anomalous Mediterranean ridge is an increase

in mass and moisture divergence by the mean flow, which drives a regional precipitation

decline [225]. However, the impacts are felt differently across the basin: the decrease in

precipitation is most pronounced over southern Turkey to the east and over Morocco and the

Iberian Peninsula to the west, away from the high-pressure anomaly (Fig. 4-1). The anomalous

ridge is accompanied by a strong low-level wind field, that disrupts the relatively weak average

circulation south of 40◦N, and locally modifies the energy and moisture balance.
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4.6.1 Eastern Mediterranean

To the east, thermal balance implies that subsidence will develop on the eastern margin of

the Mediterranean ridge to compensate for cold advection from anomalous northerlies [225],

which will tend to suppress precipitation. This view is consistent with the particularly large

anomalous downward motion centered over that region in future projections (Fig. 4-21-a).

The time-mean regional energy balance can be written in pressure coordinates as [213]

∂T

∂t
=

Q

cp︸︷︷︸
A

−
(

p

p0

)κ

ω
∂θ

∂p︸ ︷︷ ︸
B

−u ·∇pT︸ ︷︷ ︸
C

−
(

p

p0

)κ ∂

∂p
(ω′θ′)

︸ ︷︷ ︸
D

−∇p · (u′T ′)︸ ︷︷ ︸
E

(4.8)

where t is time and p pressure, T is temperature, Q is diabatic heating/cooling, cp is the

specific heat of dry air at constant pressure, p0 is a reference pressure (1000 hPa), R is the

specific gas constant for dry air, κ = R/cp, ω is pressure velocity (Pa/s), θ is potential temper-

ature and u is the horizontal wind vector. Time means are denoted with overbars, and their

deviations with ′. Time means are computed in CMIP5 models for the 1976-2005 (reference)

and 2071-2100 (future) periods. For long-term averages, the term on the left (∂T∂t ) is about

zero.

The last two terms on the right-hand side (D and E, transient terms) are also small (Fig.

4-20), and the balance is between diabatic forcing (A), vertical advection (B) and horizontal

advection (C). Those three terms also dominate changes in the long-term balance. Downward

motion compensates for the cooling from anomalous northerlies; yet, because it also suppresses

precipitation, it indirectly leads to diabatic cooling of the air column (less vertical latent heat

flux), and therefore reinforces itself. This likely explains why the cooling from horizontal ad-

vection is only about two-thirds of the change in adiabatic warming (Fig. 4-21-b). Models

correctly reproduce the inter-annual link between winter Eastern Mediterranean precipitation

and vertical velocity anomalies (Fig. 4-21-c). Across models, the change in seasonal precipi-

tation is well correlated to that in pressure velocity (Fig. 4-21-d).

Topography in this region also likely plays a role in driving subsidence. Anomalous northerlies

will tend to flow downslope from the Anatolian Plateau that extends over most of Turkey,

143

��������������������������		�	��	�������������������
���




thus leading to a localized strengthening of trends in downward motion (Fig. 4-21-a) and in

precipitation decline (Fig. 4-1-d). The resolution of orography in GCMs is however quite poor

and a better assessment of the interaction between wind trends and mountains in the East-

ern Mediterranean requires dynamical downscaling. In addition, during winter, evaporation

from the Mediterranean Sea provides, especially in its eastern regions, a significant fraction

of the water that falls as precipitation [26]. The western end of the basin depends rather

on Atlantic evaporation. Therefore, the relative cooling of Mediterranean SSTs may act to

decrease precipitation not only through it effect on regional circulation, but also by limiting

the increase in evaporation and therefore moisture fluxes towards land. This might be an im-

portant factor for the Eastern Mediterranean, which receives much of its winter precipitation

from Mediterranean cyclones [277].
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Figure 4-20: Energy budget equation terms for the Eastern Mediterranean (20◦-35◦E/30◦-
40◦N), estimated from ERA-Interim 6-hourly data (1980-2018). See equation 4.8 for details.

4.6.2 Western Mediterranean

To the west of the basin, the energy balance argument does not hold. There, while precipitation

still declines, the trend is rather towards upward motion (Fig. 4-21-a). Because anomalous

winds associated with the low- level pressure high are predominantly easterly, they do not
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Figure 4-21: (a) CMIP5 multi-model mean change in DJF 500 hPa pressure velocity, under
the RCP8.5 scenario. For each model, projections were normalized by its mean annual global
temperature change. Dots indicate that more than 80% of models agree on the sign of the
change. (b) Change in column-integrated energy budget terms across CMIP5 models, averaged
over the Eastern Mediterranean (see box in (a)) (A: diabatic warming; B: vertical advection;
C: horizontal advection, see equation 4.8). (c) Eastern Mediterranean (20◦-35◦E/30◦-40◦N,
see box in (a)) DJF precipitation and p-velocity anomalies in historical (1976-2005) CMIP5
models and the observed record (1979-2018: ERA-Interim p-velocity and GPCP precipitation).
(d) Change in Eastern Mediterranean DJF precipitation and pressure velocity across CMIP5
models, normalized by each model’s mean annual global temperature change. 95% confidence
intervals are shown by light gray bars.

change the energy balance as much as they do over the Eastern Mediterranean. However,

they have a substantial impact on the moisture budget. Atlantic westerlies are the direct
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source of precipitation for the Western Mediterranean [128]. Projected circulation trends

not only act to weaken this moisture influx, they also tend to advect much drier air from

the Sahara Desert (Fig. 4-22-c). Future projections show a consistent stagnation or weak

increase in low-level specific humidity in the area (Fig. 4-22-a) which, combined with warming,

leads to a pronounced increase in dew point depression (Fig. 4-22-c) well correlated with the

regional precipitation decline across models (Fig. 4-22-b).. Lower relative humidity in the low

troposphere decreases convective instability, meaning that uplift and associated condensation

of water vapor become less likely. In addition, a decline in relative humidity higher up in the

atmospheric colum, although less pronounced than at 850 hPa, can also act towards reducing

precipitation through entrainment.

The results from our regional simulations (Fig. 4-16-a,c) as well as the analysis based

on the external mode (Fig. 4-5-b) show that the relative Mediterranean Sea cooling plays a

limited role in dynamical trends over the Western Mediterranean. Most of the wind change re-

sponsible for the dry advection and precipitation decline is forced by changes in the large-scale

circulation. Therefore, the precipitation response to the relative SST cooling (Fig. 4-16-b,d)

is much weaker over the Western Mediterranean, in particular over Morocco.

The impact of the anomalous Mediterranean ridge on specific humidity trends can be quan-

tified using the analog method described in section 4.4. Using the Mediterranean SLP field

as predictor and specific humidity as predictand, we estimate the specific humidity anomalies

associated with future SLP patterns in each CMIP5 GCM. Multi-model averages for DJF and

MAM are shown in Figure 4-23. The drying effects of the SLP anomaly over northwestern

Africa and the Iberian Peninsula are evident, and compare well to the trend anomalies ob-

tained by subtracting the regional average increase in specific humidity due to the background

warming. These physical insights are confirmed by the mechanistic analysis of high-resolution

climate projections over the Western Mediterranean (see Chapter 5). Similarly, the anoma-

lous high is associated with slight atmospheric drying over southern Turkey, which may also

contribute to the precipitation decline in this area. This is due to the anomalous northerlies

advecting colder and drier air from central Europe and the Anatolian Plateau. The wetting

effect of the pressure high over Egypt and Lybia is also clear in DJF, and absent in spring as

the region of high pressure weakens and shifts westwards, away from this region. The region
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Figure 4-22: CMIP5 multimodel mean change in DJF 925-850 hPa averaged specific humidity
(a) and dew point depression (c), normalized by each model’s annual global-mean temperature
change. Arrows indicate DJF (a) historical and (c) change in 925-850 hPa averaged winds.
Wind arrows in (c) are colored according to mean historical relative humidity at each point and
shown only where 80% of models agree on the sign of the change. (b) Western Mediterranean
(15◦W-0◦/30◦-40◦N, box in (a)) DJF precipitation and dew point depression change across
CMIP5 models, normalized by each model’s mean annual global temperature change. 95%
confidence intervals are shown by light gray bars.

directly west of the Sahara Desert at 20-25◦N is also characterized by intense drying in both

winter and spring. This trend is part of a global phenomenon of weak increases in atmospheric

humidity at the eastern margins of the oceanic subtropical highs, where mean subsidence is

strong [127]. Background easterlies blowing from the Sahara Desert may also prevent any

increase in specific humidity in this region, since the Sahara, even in a warmer and wetter

climate, will not provide much more atmospheric moisture since evaporation will not increase
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significantly in this region. The effects of this feature are mainly concentrated south of 30◦N,

where little winter precipitation occurs. Still, it may help partly strengthen the drying trend

caused by the anomalous Mediterranean pressure ridge. Another potentially important conse-

quence is on spring precipitation on the southern slopes of the Atlas Mountains, which, though

scarce, critically depends on moisture transport from the tropical Atlantic [27].

a b

c d

Figure 4-23: RCP8.5 change (2071-2100 minus 1976-2005) in Mediterranean 925-850 hPa aver-
aged specific humidity (a,b) estimated by dynamical adjustment based on concurrent seasonal
SLP anomalies and (c,d) CMIP5 multi-model mean, during (a,c) DJF and (b,d) MAM. In
(c,d), the zonal mean change was subtracted at each latitude to make the range of values
correspond to that in panels (a,b).

From this perspective, it is straightforward to understand the high correlation between the

magnitude of anomalous SLP and Mediterranean-wide precipitation change (Fig. 4-3). Even

though the physical mechanisms behind the drying are different in the Eastern and Western

Mediterranean, the change in SLP determines the strength of the anomalous circulation that

drives the decline in precipitation at each end of the basin. While these elements seem to

explain precipitation trends in GCMs, it is important to remember that both the Eastern

and Western Mediterranean exhibit in reality complex orographic features, which play an
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important role in regional precipitation patterns. As noted previously in the case of the

Eastern Mediterranean, their interaction with large-scale circulation trends may also impact

future precipitation changes. Over southern Turkey, anomalous northerlies forced down the

Anatolian plateau will cause subsidence and suppress precipitation. A similar phenomenon

can be expected to occur north of the Atlas Range in Morocco and Algeria. These features are

not well-resolved by GCMs; at the relatively finer resolution of our regional simulations (35

km), the orographic signal is much more detectable (see also Chapter 5), and the enhanced

precipitation decline south of Turkey may indicate further drying following subsidence induced

by topography (Fig. 4-16-b,d) [139].

4.7 Discussion

4.7.1 Uncertainties in the thermodynamical response

The estimate of the SLP response to surface thermodynamical forcing is based on a roughly

0.5◦C change in the land-sea temperature contrast, with limited variance across models. That

change is in no small part determined by Mediterranean SST trends under continued green-

house gas forcing, which in turn depend, among others, on Mediterranean Sea circulation.

The latter, however, is not well-resolved in GCMs [195]. Reasons are to be found among the

region’s complex geography, its small size relative to model resolution and the very small ex-

tent (15km) of the Gibraltar Strait, which plays a major role in the mass and energy balance

of the Mediterranean [217]. Energy exchange with the Atlantic Ocean at Gibraltar must be

parametrized in GCMs, which of course leaves room for substantial errors in long-term SST

trends. In some models, the Mediterranean is even represented as a closed sea, which may

tend to overestimate the SST response, with implications for the regional circulation change.

Despite obvious differences, the impact of the Mediterranean relative cooling on regional cir-

culation and precipitation is relatively similar between the ERA and MPI experiments: a

general increase in SLP of about 0.6 hPa, peaking over the Eastern Mediterranean at around 1

hPa. This suggests that the response to relative cooling may also be similar when using other
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CMIP5 models as lateral boundary conditions.

Figure 4-24: (a) CMIP5 multi-model mean Northern Hemisphere 300 hPa geopotential height
change under RCP8.5 (2071-2100 minus 1976-2005). The zonal-mean change is subtracted
at each latitude to highlight zonal variability. (b) Difference in 300 hPa geopotential height
between the "0C" and "+1.5C" experiments.

4.7.2 Combining mechanisms and other explanations

The "dynamical" SLP response is higher over the Western Mediterranean, which can be seen

as an eastward shift of the North Atlantic subtropical high, consistent with the eastward shift

of the stationary waves themselves [231]. Contrarily, the SLP anomaly due to relative Mediter-

ranean cooling peaks downstream of the anomaly, i.e. to the south and east of the anomalous

high in the mulimodel CMIP5 simulations (compare Fig. 4-1-a with 4-17-a). Although assessed

within different modelling frameworks, our approach suggests that the two mechanisms may

individually contribute somewhat equally to the Mediterranean SLP increase (about +0.6-0.7

hPa, or 35 to 40% of the mean projected response), and therefore to the precipitation decline.

The dynamical SLP anomaly nevertheless clearly dominates in a number of models, in addi-

tion to being responsible for most of the inter-model spread. The strong geopotential ridge

projected at upper levels above the Mediterranean by CMIP5 models [225]) is also clearly

associated with the planetary wave shift, not with the surface relative cooling, whose effect is
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limited to the lower troposphere (Fig. 4-24).

In our regional simulations, we find associated with the relative cooling strong anomalous

northerlies to the east of the basin, around 30-35◦N (Fig. 4-17-a). To the west, the meridional

wind response is weaker, consistent with the fact that the stationary wave response explains

almost all of the magnitude in meridional wind trends west of 15◦E (Fig. 4-5-b). Repeating the

external mode calculation of section 4.3.3 for 35◦N rather than 40◦N and making an estimate

of the change in meridional winds at 850hPa leads to a similar conclusion that the external

mode cannot explain the total response in the east of the basin. Similarly, adding the SLP

trends induced by the two proposed mechanisms accounts for only 80% of the model-mean

projected change, leaving a sizeable part unexplained. Therefore, we conclude that while the

surface forcing helps to explain the inability of the external-mode estimate to account for the

full 850 hPa meridional wind response in GCMs at that latitude, the absence of a circulation

anomaly at 40◦N, following the relative SST cooling (Fig. 4-17-a), suggests that simply adding

the two mechanisms may not be sufficient to explain the total circulation response at 40◦N.

A non-linear superposition of the dynamical responses to each forcing may explain part of

that discrepancy, and also enhance the SLP total response. Additionally, the use of a different

modeling framework, the finer representation of topography, the influence of friction and high

topography on the mean all possibly contribute to shaping the low-level circulation response

and may explain why a larger wind anomaly is not seen around 40◦N. Surface friction in

particular responds non-linearly to surface winds, which may be relevant in this region of

complex topography. A smoother orography in GCMs may for instance underestimate the

reduction in wind speed anomalies consecutive to surface friction, and overestimate SLP trends

compared to finer-resolution RCMs. Further investigation is warranted, particularly since

GCMs probably overestimate the dynamical response to upper-level forcing in the first place.

One other prominent feature of the mid-latitude circulation change is an increase of SLP in

the North Atlantic, between 45◦W and 0◦ (Fig. 4-1-a). We find that part of this increase, along

the 40◦N parallel, where CMIP5 SLP trends are robust, may also be a response to upper-level

circulation changes (Fig. 4-a). North of there, the SLP change, though less robust, may be

the downstream response to the North Atlantic Warming Hole (NAWH), an area of relative
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SST cooling [95], though this remains far from certain. Despite weaker inter-model agreement

in this region during winter, a downstream increase in SLP extending to the Mediterranean

is possible. Though it would not explain the robustness of the Mediterranean hotspot, it may

combine with the robust anomalous positive SLP from our two proposed mechanisms. Model

agreement in this region is stronger in spring and fall, and this phenomenon could therefore

also enhance the Mediterranean SLP response in those seasons, especially given the weaker

projected upper-level flow changes in early spring and late fall (compare for instance Figs. 4-10

and 4-11 and associated reconstructed SLP anomalies, largest in DJF). Simulation results of

Gervais et al. (2019) [95] suggest that the impact is small, but not zero (their figures 3 and

5). They also used only one model. Analyzing, within a coherent modelling framework, the

contributions of upper-level flow changes, the Mediterranean relative cooling and the NAWH

to future Mediterranean circulation trends may shed more light on this.

4.7.3 Consistency of mechanisms with other studies

We end by discussing the consistency of our results with those of previous studies. Among the

various mechanisms proposed to explain the anomalous ridge, discussed in the introduction,

we show in this chapter that changes in stationary wave structure discussed by Simpson et al.

(2016) [231] play a crucial role, both for the model mean and inter-model spread (Fig. 4-10).

Consequently, poleward shifts of the Hadley circulation and storm tracks, already shown to

be limited in the Northern Hemisphere during winter, probably have limited direct influence.

Recently, Brogli et al. (2019b) [36] concluded that large-scale circulation changes were the

main driver the Mediterranean precipitation decline, and that regional effects were minimal.

Their simulations that focus on the relative cooling of the Mediterranean also find a decrease

in precipitation in the Eastern Mediterranean compared to a scenario where SSTs warmed as

much as the land (their figure 4). Yet, their conclusions were based on two models (MPI-

ESM-LR and HadGEM2-ES) in which the contribution of upper-tropospheric forcing happens

to dominate (Fig. 4-10-d). As we show here, however, large-scale dynamics have a wide range

of effects across models; although they account for much of the spread in the precipitation

response, large-scale circulation trends are not sufficient to fully explain regional projections.
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In terms of precipitation response, our results agree with the perspective offered by Seager

et al. (2014) [225]. In CMIP5 models, the Mediterranean drying is connected to changes

in moisture convergence by the mean flow, but the drivers behind those changes vary from

east to west. To the west, moisture convergence declines due to a weakening of the Atlantic

moisture supply through increased advection of dry air from the Sahara. To the east, large-scale

subsidence is the main cause of the precipitation decrease. In reality, however, precipitation

is strongly linked to prominent topographic features that are, to a large extent, not resolved

by GCMs. Orographic lifting and the interaction of mountains with large-scale circulation

changes predicted by CMIP5 models will impact precipitation projections.

Our results also shed some light on the conclusions of Zappa et al. (2015b) [277], who found

the Eastern Mediterranean precipitation decline to be associated with large reductions in

cyclone frequency and intensity. We find that regional circulation and its changes control

precipitation variability and change in the basin (Figs. S2, 4-21 and 4-22), and therefore

should control cyclonic activity, which is responsible for most of winter precipitation [277].

The decrease in mean storm precipitation and dynamical weakening of cyclones they identified

is consistent with the substantial anomalous regional downward motion over the region (Fig.

4-21-a). In addition, anomalous northerlies advecting drier higher-latitude air and the relative

Mediterranean cooling both act to constrain humidity trends, which likely cause the projected

local minimum in specific humidity change near Cyprus (Fig. 4-22-a). The weakening of the

storm track is consistent with a weakening of the meridional temperature gradient between

the Mediterranean Sea and the continent to its north, and the reduction in baroclinicity it

may lead to. Future research should focus on understanding how the large-scale drivers we

identified control storm genesis in the Mediterranean.

4.8 Conclusion

In conclusion, we find that future winter Mediterranean circulation and hydroclimate trends

in the CMIP5 multi-model mean are primarily determined by large-scale circulation changes

and regional thermodynamical forcing. The combination of shifts in winter stationary wave

and asymmetries in their vertical structure lead to a pronounced anticyclonic anomaly over
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the Mediterranean. In addition, the atmospheric response to reduced warming of the Mediter-

ranean Sea compared to land also contributes to the anticyclonic anomaly. This analysis

applies generally to the "extended" winter season (November-April). The dynamical response

maximizes during winter, first because that is when stationary waves and their changes are

at their strongest, and second, because at that time of the year, the Mediterranean Sea lies

away from the Hadley cell edge and is warmer than the atmosphere above it, which leads

to low static stability, thus allowing contrasting surface temperature trends to extend to the

lower troposphere and trigger a major circulation response. These results offer a coherent and

mechanistic picture of Mediterranean winter climate projections that is consistent with their

robustness.

While much work remains to be done to understand the variability in SLP and precipitation

change patterns across models, we find that the unique combination of the large-scale "dy-

namic" response and the independent, regional-scale "thermodynamic" response explain the

robust regional maximization of wintertime climate change over the Mediterranean, making

this region a major climate change hotspot for the coming decades. The contributions from

each response appear comparable, though a non-linear superposition may contribute to en-

hancing the response even more in certain models. Robust physical mechanisms involving

local circulation account for the coherence of regional precipitation change and a maximized

response at each end of the basin. Complex topography in those two regions indicates however

that detailed regional simulations are required for improved future climate projections.
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Chapter 5

High-resolution climate change

projections over the Western

Mediterranean

C⃝ Springer 20201

5.1 Introduction

Previous chapters have described how the Mediterranean Basin stands out in global climate

projections as a major climate change hotpot, notably due to a severe winter precipitation

decline within this already semi-arid area. We discussed in chapter 4 why the western end

of the basin, in particular, should experience a particularly sharp decrease in precipitation.

However, we have so far limited our analysis to coarse-resolution GCMs and medium-resolution

regional simulations. The complex topography and corresponding climate of the region are

not well-resolved at such resolutions [90]. For instance, important mountain watersheds can

stretch over just a few thousand square kilometers, a fraction of a GCM grid cell (∼15000
1This chapter is an edited reproduction of Tuel, Kang and Eltahir (2020) [253]. A discussion of MRCM per-

formance compared to station data has been added, as well as a section on subseasonal extremes of temperature
and drought.
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km2). Precipitation over Morocco and Andalusia is also strongly variable in space and time,

and largely determined by the complex topography, with large maxima over the Rif and Atlas

Range peaks, and over Spain’s coastal plains and Sierra Nevada (Fig. 5-1-a, 3-a). For an

accurate assessment of climate change risks and processes in Morocco and the surrounding

areas, downscaling projections to a higher resolution is critical.

Regional Climate Models (RCMs) are well-suited to downscale projections when long and

reliable records are not available, as is the case for most of our area of interest. They can

provide detailed physical insights into the future climate of a region, down to scales that

are relevant for water management applications. RCMs have been shown to bring significant

improvements to the modelling of the complex North African climate [247, 216], where the

correct simulation of precipitation is challenging due to its high spatio-temporal variability.

Several studies have already evaluated climate change impacts at high resolution over this

area. Most used horizontal grid spacings larger than 20km [90, 64], with a few studies going

down to under 15km within the framework of the Coordinated Regional Climate Downscaling

Experiment database (CORDEX) [247, 227, 166, 246].

Still, these past studies have a number of limitations. First, the choice of the forcing GCM is not

discussed, whereas it is well-known that various GCMs have different biases and some are not

able to correctly model the climate in given regions [242, 170]. Bias correction is the preferred

option to tackle this problem, but some GCMs may not be able to accurately represent large-

scale climate drivers and known teleconnections, thus diminishing our confidence in their

projections. Second, the physical mechanisms behind projected regional climate changes are

not discussed. It is important to put the regional drying in the context of larger-scale trends

simulated by coarse-resolution GCMs. This chapter addresses these points. We evaluate the

performance of the MIT Regional Climate Model (MRCM) in simulating seasonal and inter-

annual regional climatic features over the Western Mediterranean, and develop and interpret

regional climate change projections over that same region. Our focus is on fine-scale changes

in the seasonal means and sub-seasonal extremes of temperature and precipitation, and their

physical interpretation.
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5.2 Area of study

Fig. 5-1-a shows our simulation domain, centered at 34◦N, 5◦W, and which covers most of

Morocco, Portugal and southern Spain; we refer to it hereafter as Northwest Africa and the

Iberian Peninsula (NWAIP). It has 166×161 grid cells with a horizontal resolution of 12 km,

sufficient to resolve much of the complex regional topography. Most of the precipitation occurs

over Portugal, western Spain and northwestern Morocco, coastal regions which stand under the

influence of North Atlantic storm systems [129, 147]. There, the climate is of the Mediterranean

type: winters are mild and wet, and summers hot and dry. Average annual precipitation ranges

from 50 mm south of the Atlas, up to about 800 mm over southern Portugal and Morocco’s

Rif Mountains. The vast majority of it falls during the wet season, from November to May.

Storm events during this period are few, short and irregular [27], occurring as mid-latitude

weather systems drifting south-eastward from the North Atlantic. Their frequency increases

with latitude, as one gets closer to the storm track center. A large fraction of the winter

precipitation falls as snow over the Atlas Range and Iberian sierras, building up a snowpack

which slowly melts over spring, guaranteeing a prolonged water supply for the plains below.

South and southeast of the Atlas, the Sahara Desert is characterized by a year-round hot and

dry climate with less than 50 mm of rain. The Spanish sierras, like the Atlas Range, act as a

barrier which slows down westerlies, forces orographic precipitation, and cuts off the moisture

supply for regions to its east. This creates a rain shadow over southeastern Spain, much drier

than the regions to its west.

Coupled to this spatial variability, rainfall is also highly variable in time, with an inter-annual

coefficient of variation ranging from 25% along the Atlantic coast up to 100% in the most

arid regions. The main driver of inter-annual winter precipitation variability in the NWAIP is

the North Atlantic Oscillation (NAO), an oscillatory pattern of sea-level pressure between the

Azores High to the south and the Icelandic Low to the north [129]. High values of the NAO are

associated with a northwards-displaced storm track and dry conditions south of 40◦N; negative

values, on the other hand, lead to wetter-than-average conditions over southern Spain, Portugal

and Morocco (see also Chapter 2). For a detailed characterization of rainfall and temperature

changes across this complex region, we divide the land area in our domain into several sub-
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regions. Relevant to precipitation projections, we select five major watersheds: the Tajo and

Guadalquivir, in southern Spain and Portugal, and the Loukkos, Sebou and Oum-Er-Rbia

watersheds in Morocco (Fig. 5-1-b). The last three provide about 70% of river discharge in

Morocco [171] and their water resources are therefore critical for the country. We analyze

both winter (DJF) and spring (MAM) seasons, since each accounts for 30-40% of annual

rainfall over most of the NWAIP domain. For temperature projections, we focus on coastal

and mountainous (above 1200m) regions in winter (DJF) and summer (JJA). Specifically, we

consider the Atlas Range in Morocco and the Sierra Nevada in southern Spain, two areas

characterized by an important winter snowpack and therefore highly vulnerable to warming

(Fig. 5-1-c).

Figure 5-1: (a) MRCM simulation domain and topography. (b) Sub-regions used for regional
analysis of precipitation projections: (A) Tajo, (B) Guadalquivir, (C) Loukkos, (D) Sebou
and (E) Oum-Er-Rbia watersheds. (c) Sub-regions used for regional analysis of temperature
projections: (a) Iberian coastal plain, (b) Sierra Nevada, (c) Moroccan coastal plain and (d)
Atlas Range. (a,c) are defined by altitude <500m and (b,d) by altitude >1200m at the MRCM
resolution.
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Agriculture plays a major part in the region’s economy, from the Spanish provinces of

Andalusía and Murcia, to the fertile plains of Morocco north of the Atlas Range. Dry summers

mean that winter rainfall is critical for agriculture, even in Spain where the penetration of

technology in agriculture is higher and irrigation more widespread. We saw in Chapter 2

how inter-annual variability in seasonal precipitation dictated that in cereal yields (Fig. 2-

11). Total precipitation during the growing season isn’t everything, however. Sub-seasonal

variability in weather also impacts crop productivity in rainfed agriculture. An average season

with precipitation falling in just 3-4 storm events separated by long dry periods may be just as

bad as a fully dry season. Fatna and Abderrahim (1997) identified for instance a very strong

correlation (r2 = 0.92) between Moroccan cereal production and cumulative rainfall deficits

during December, January and February [76]. Jarlan et al. (2014) found in the case of wheat in

Morocco, rainfall and temperature anomalies play a major role essentially at critical stages of

wheat development [134]. Water stress at the early stage of growth in November-December can

induce significant losses; even if more favorable conditions follow, the water deficit cannot be

made up for and stressed plants have lower yields. High temperatures also tend to negatively

impact yield, especially between March and May‘, during the critical stages of flowering and

grain filling for cereals [151, 12, 134, 102]. Short (2-5 days) warm episodes around the time of

flowering with average temperatures above 34◦C can reduce wheat yield by 30-40% [12, 199].

Persistent >20◦C nighttime temperatures also decrease wheat fertility and grain size.

Reported critical drought and temperature thresholds for wheat, the major rainfed crop in

Morocco, vary in the literature [57]. For illustrative purposes, we simplify the problem by

looking at two simple metrics for weather extremes: the maximum number of consecutive dry

days within a growing season (November-April) and the maximum daily-average temperature

between April and May. We assess the performance of MRCM in simulating the statistics of

these extremes and infer future risks from such extremes for agriculture using the downscaled

climate projections.
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5.2.1 Station data

Additionally, available station data over Morocco are used, both to assess the skill of MRCM in

downscaling "perfect" coarse-scale information from ERA-Interim, and to bias-correct future

projections at the station scale to improve the assessment of risks from subseasonal extremes.

A map of station locations is shown on Figure 5-2. Daily average temperature data are avail-

able from the Global Historical Climatology Network (GHCN) database [172] for our 1982-2011

simulation period (see next section) at 11 locations, all major Moroccan cities. Daily precipi-

tation data at 90 stations was obtained from the Department of Water at Morocco’s Ministry

of Equipment, Transport, Logistics and Water. This data is concentrated in mountainous

regions, where most of the precipitation occurs, hence the relatively small number of stations

available over the plains. Coverage is also much higher over Morocco’s northern regions (Rif)

than over the Atlas.

Figure 5-2: Location of ground stations with available precipitation (blue crosses) and air
temperature (red diamonds) data in Morocco.
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5.3 Model description and experimental design

5.3.1 The MIT Regional Climate Model (MRCM)

MRCM [132] is based on the ICTP-Regional Climate Model Version 3 (RegCM3, Pal et al

2007 [187]). MRCM maintains much of the same structure but incorporates several significant

enhancements, including coupling of the Integrated Biosphere Simulator (IBIS) land surface

scheme [270], a new surface albedo assignment [162], modified boundary layer height and

boundary layer cloud schemes [98], an irrigation scheme [163], an improved convective cloud

scheme [96] and a convective rainfall auto-conversion scheme [97]. With its incorporation of

new physical schemes or modification of original schemes, MRCM has consistently showed

comparable or better performance in simulating key climate features across various regions

(e.g., North America, West Africa, Southwest Asia, and the Maritime Continent) compared to

various regional climate models. In particular, Im et al (2014) demonstrated from simulations

over West Africa that the use of IBIS as the land surface scheme results in better representation

of surface energy and water budgets in comparison to RegCM3’s BATS [132]. Additionally, Pal

and Eltahir (2016) improved the skill of MRCM in simulating the key surface processes over

the desert of southwest Asia, thanks to a new albedo prescription based on NASA/GEWEX

Surface Radiation Budget (SRB) project and emissivity from NASA MODIS surface emissivity

data [186]. In consideration of the good performances from these previous studies, we adopt

the same combination of physical parameters and land surface conditions as in Pal and Eltahir

(2016) except for the convection scheme. We run the model at a resolution of 12 kilometers.

The choice of convective scheme is based on results of test simulations among several poten-

tial schemes and selecting the one that simulates observations best. The following physical

schemes are employed in our experiment: the IBIS land surface scheme; the Grell convection

scheme with Fritsch-Chappell closure assumption; the sub-grid explicit (SUBEX) moisture

scheme [188]; the radiation package of the National Center for Atmospheric Research (NCAR)

Community Climate Model, version 3 (CCM3) [146]; the nonlocal planetary boundary layer

scheme [120]; and the ocean–atmosphere flux algorithm proposed by Zeng et al. (1998) [280].
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Boundary
conditions Scenario Simulation

period

Reanalysis
downscaling

ERA-Interim +
OISST — 1982-2011

Climate change
simulations

MPI-ESM-MR
Historical 1976-2005
RCP4.5 2071-2100
RCP8.5 2071-2100

GFDL-ESM2M
Historical 1976-2005
RCP4.5 2071-2100
RCP8.5 2071-2100

IPSL-CM5A-LR
Historical 1976-2005
RCP4.5 2071-2100
RCP8.5 2071-2100

Table 5.1: Summary of the ten MRCM simulations.

5.3.2 Experiment design

First, we evaluate the model’s performance in simulating key processes of the regional climate

by performing a dynamical downscaling of the ERA-Interim reanalysis dataset (Dee et al.

2011) with MRCM over the 30-year 1981-2011 period. In this experiment, MRCM is driven by

the 1.5◦×1.5◦ 6-hourly ERA-Interim data [55] as lateral boundary conditions and the 1◦×1◦

weekly National Oceanic and Atmospheric Administration (NOAA) optimum interpolation sea

surface temperatures (OISST, [206]) over oceans. We select the optimal convection scheme in

this setting. This simulation is afterwards referred to as ERA/MRCM. Second, we perform

climate change experiments using the same configuration of MRCM as in ERA/MRCM, but

with 6-hourly output from three selected GCMs from the CMIP5 data archives ("r1i1p1"

ensemble members) used as lateral boundary conditions. The selection process is described

in section 5.3.3. The 1975-2005 period forced by historical greenhouse gas concentrations is

taken as reference, and compared with the 2070-2100 period forced by the RCP4.5 and RCP8.5

emission scenarios [256]. In total, nine 31-year GCM runs are dynamically downscaled with

MRCM. A summary of the ten MRCM runs is given in Table 5.1. In all simulations, the first

year is discarded as spin-up, leaving 30-year projections (1976-2005 for reference, 2071-2100

for future and 1982-2011 for ERA/MRCM) to be analyzed. Different strategies are selected to
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Name
Resolution

Atmosphere Ocean
ACCESS1-0 144 × 192 300 × 360
BCC-CSM1-1-m 160 × 320 232 × 360
CanESM2 64 × 128 192 × 256
CESM1-CAM5 192 × 288 384 × 320
CMCC-CMS 96 × 192 149 × 182
CSIRO-Mk3-6-0 96 × 192 189 × 192
GFDL-ESM2M 90 × 144 200 × 360
INM-CM4 120 × 180 340 × 360
IPSL-CM54-LR 96 × 96 149 × 182
MIROC-ESM 64 × 128 192 × 256
MIROC-ESM-CHEM 64 × 128 192 × 256
MPI-ESM-MR 96 × 192 404 × 802
NorESM1-ME 96 × 144 384 × 320

Table 5.2: List of selected CMIP5 models. Resolution is in latitude by longitude.

correct the mean biases of surface temperature and precipitation in the MRCM simulations, at

the monthly time scale for the whole simulation domain, and at the daily time scale at station

locations (see section 5.3.4).

5.3.3 GCM selection

We select suitable GCMs to use as forcing boundary conditions for MRCM. GCMs are selected

among all CMIP5 participating models for which 6-hourly data is available, according to the

following methodology:

1. First, given the dominant role played by the NAO in driving inter-annual precipitation

variability over our domain, we first retain thirteen models that are able to capture some

of the main features of the NAO, based on the comprehensive analyses by Davini and

Cagnazzo (2014) [53] and Wang et al. (2017) [264], and for which 6-hourly output data

is available. The model list is given in Table 5.2.

2. Second, we exclude the GCMs that are unable to simulate the impact of the NAO on
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southwestern Mediterranean precipitation (15◦W–0◦/30–40◦N) during winter. This im-

pact is quantified by the correlation of the DJF NAO index and concurrent precipitation

(Fig. 5-3). Two procedures are tested to compute the NAO index in GCMs: first, as

the time series of the first principal component of DJF sea-level pressure (SLP) over the

North Atlantic (90◦W–40◦E and 20–80◦N), and second, as the projection of annual DJF

SLP fields onto the "observed" NAO pattern, defined as the first principal component of

DJF SLP in the NCEP-NCAR reanalysis [138] (Fig. 5-3-a,b,c,d). Both approaches yield

similar results, though each has its limitations, as discussed in Davini and Cagnazzo

(2014). We also assess the ability of GCMs to reproduce the spatial patterns of DJF

SLP correlation to Western Mediterranean precipitation (Fig. 5-3-e,f,g,h).

3. Finally, the historical simulations from the selected GCMs are evaluated over the domain,

by looking at climate variables during winter and spring relevant for the present analysis:

temperature, relative humidity and precipitation. Spatial patterns and regional means

are compared to TRMM, ERA-Interim and TerraClimate to confirm that domain-average

values and spatial patterns, particularly the dependence with elevation, are reasonably

captured.

We select three GCMs at the end of this screening process: GFDL-ESM2M [68], IPSL-

CM5A-LR [67] and MPI-ESM-MR [276]. Although they all suffer from an evident dry bias

(common in fact to most, if not all, CMIP5 GCMs, partly connected to the poor representation

of the regional orography, which plays an important role in forcing winter precipitation), they

accurately reproduce the SLP-precipitation relationship during winter.

5.3.4 Bias correction

Output from regional climate modeling experiments contains systematic biases arising, among

others, from lateral boundary conditions and imperfect representation of physical processes

[153, 71]. To reduce this bias and improve the relevance of projections, MRCM output must

be bias-corrected. To that end, we adopt two slightly different strategies, one for monthly-

mean variables over the whole domain, and one for daily variables at station locations only.
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Figure 5-3: (a-d) DJF Western Mediterranean (15◦W-0◦/30-40◦N) precipitation against con-
current NAO circulation index (see text for definition); and (e-h) Pearson correlation of DJF
SLP to concurrent Western Mediterranean precipitation, in (a,e) GPCP and NCEP-NCAR re-
analysis (1979-2017); (b,f) GFDL-ESM2M; (c-g) IPSL-CM5A-LR; and (d,h) MPI-ESM-MR.
For (b-h) data covers the 1950-2004 period.

For monthly-average values, we apply at each grid point the cumulative distribution function

transform (CDFt) method [174] which corrects the given (MRCM) CDF based on a target (ob-

served) CDF by matching the quantiles of the first with those of the latter with an empirically-

estimated transfer function (this technique is part of the family of methods known as quantile

mapping [152]). As observations, we use data from the Tropical Rainfall Measuring Mission

(TRMM, [126]) 3B43 version 7 for precipitation and, for temperature and precipitation as well,

the TerraClimate dataset [1], a consistent, long-term and fine-scale gridded observation-based

record. Both datasets are first regridded to the MRCM resolution. TerraClimate is available

globally at monthly resolution after 1958, while TRMM is available only after 1998, but at a

daily resolution. We consider both datasets for precipitation, because TerraClimate extends

over a longer period, which allows for a better assessment of MRCM performance, and because

TRMM is available at a daily time step, which we will require for the analysis of sub-seasonal

drought extremes (see below).
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Because we apply the CDFt method at each grid point and month separately, the 30 values

this corresponds to are not sufficient to estimate the CDF non-parametrically. Therefore, we

first fit parametric CDFs to monthly-mean values of temperature and precipitation, at each

grid point, in model output and observations. We choose normal (gaussian) distributions for

monthly-mean temperatures and gamma distributions for monthly-mean precipitation. As

usual in bias correction methods, this transformation is assumed to remain valid in the future

climate, so the same tranform function is applied to future temperature and precipitation.

For the analysis of subseasonal extremes, much more data are available since we now focus

on the daily time step. For daily temperature, at each of the 11 available locations, we apply

the same CDFt method to MRCM-simulated and observed data over their common period.

For some stations, temperature observations are missing for a few years at the beginning of

the 1980s, but overall, at each station, observations and MRCM ouput are both available for

at least 25 common years. The bias correction is implemented for each month separately. For

precipitation, since we are interested in drought periods (i.e., days with no or negligible pre-

cipitation), there is no need to correct for the magnitude of precipitation on wet days. Rather,

we calculate for each station its wet-day probability between November and April, the wet

season, during which crops are grown. A wet day is here defined as a day with more than

0.5mm of precipitation. When the associated MRCM series overestimates the number of wet

days, we calculate the daily precipitation threshold in the MRCM series that corresponds to

the station-based wet-day probability, and set all daily precipitation values below this thresh-

old to 0 in the MRCM series. This ensures that MRCM and station observations have the

same wet-day probability (this does not correct, however, for potential biases in the temporal

autocorrelation of precipitation). If the MRCM series has too few wet days compared to ob-

servations, this methodology obviously does not work. Other approaches are possible, like the

random generation of additional wet days in the MRCM series to increase wet-day probability,

but it is not straightforward to do so while preserving temporal autocorrelation, very impor-

tant when considering drought periods. Out of the three GCMs, only IPSL-CM5A-LR is in

this situation (the other two both simulate the same or a higher number of wet days at each

station, see section 5.4.2); therefore, we discard it from our analyses of subseasonal drought

extremes.

166

��������������������������		�	��	�������������������
���




5.4 Simulation results

5.4.1 MRCM performance

We first assess the performance of ERA/MRCM by comparing the simulated precipitation to

TerraClimate, focusing on the climatology over our domain and inter-annual variability for

the winter season, which accounts for the bulk of water availability in this region. While the

GCM ensemble mean (ENS/GCM) is able to broadly capture the overall precipitation gradient

between the wetter regions over the Iberian Peninsula and the dry desert over northwest Africa,

the small-scale maxima along the African coastlines and over the high mountainous regions

are, unsurprisingly, missed (Fig. 5-4-a,b,c). The overall dry bias of GCMs over Morocco

is evident Figure 5-4-c, expected since it is the unresolved high-altitude regions that receive

the most precipitation. By contrast, ERA/MRCM is in good agreement with the observed

distribution, both at large- and small-scales. There is a substantial overestimation of DJF

precipitation over the Moroccan and Algerian coastlines, as well as central Spain. South of the

Atlas Range, precipitation is also slightly overestimated, possibly a consequence of the incorrect

representation of summer small-scale convective systems which bring a large fraction of annual

precipitation in this region. Still, MRCM exhibits a pronounced precipitation downscaling skill,

especially in regions where orographic forcing dominates.

As to annual cycles (Fig. 5-4-d,e), the ENS/GCM is quite able to capture the seasonal varia-

tion of precipitation over the Iberian Peninsula, with its maximum in winter and minimum in

summer. The magnitude of wet-season precipitation is reasonably close to TerraClimate, de-

spite a dry bias between October and December. Summer precipitation is quite overestimated,

however. By contrast, over northwestern Morocco, GCMs fail to capture the seasonal cycle,

showing instead a somewhat constant monthly precipitation rate. The dry bias during win-

ter and spring is evident. Additionally, inter-GCM spread is quite large, especially between

July and September when some GCMs produce copious amounts of precipitation, possibly

the result of exaggerated tropical moisture transports typically responsible for much of the

summer precipitation south of the Atlas Range [27], or of incorrect representation of summer

convection. Compared to ENS/GCM, ERA/MRCM is in good agreement with TerraClimate,
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Figure 5-4: (a-c) Spatial distribution of 30-year climatology of average DJF total precipita-
tion over the NWAIP: (a) TerraClimate, (b) MRCM-downscaled ERA-Interim (ERA/MRCM),
(c) ensemble mean of 13 CMIP5 GCMs (ENS/GCM) (see Table S1). (d-e) Annual cycles of
monthly land precipitation averaged over (d) the southern Iberian Peninsula and (e) northwest-
ern Morocco (see black contours in (a-c)), in TerraClimate (black), ERA/MRCM (red) and
ENS/GCM (blue). The light blue shading corresponds to inter-GCM spread in the 13-member
GCM ensemble.

especially over northwestern Morocco, though it fails to fully capture the bimodal distribution

with two peaks in December and March as evident in TerraClimate. GCM biases over the

Iberian Peninsula, especially a peak in precipitation around May and the underestimation of

late fall precipitation, are not fully corrected.

Inter-annual variability in precipitation is well captured by ERA/MRCM. Figure 5-5 shows

the time series of DJF precipitation anomalies (defined with respect to each series’ 1982-2011

mean), over the five selected watersheds (Fig. 5-1-b). Anomaly correlation coefficients range

from 0.91 to 0.98, which shows that MRCM, for this domain and at the 12 km resolution, is
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Figure 5-5: Annual DJF precipitation anomalies (mm/day) averaged over the five selected
watersheds, in TerraClimate (black) and ERA/MRCM (blue). Anomalies are defined with
respect to each series’ 1982-2011 average.

Figure 5-6: (a-b) (a) Monthly and (b) annual-average precipitation at stations and correspond-
ing ERA/MRCM grid cells.

able to correctly simulate the precipitation response to large-scale, NAO-linked storm track

shifts present in the boundary conditions. At the station scale, ERA/MRCM and station data

also show reasonable agreement for monthly and annual-mean values (Fig. 5-6-a,b). MRCM

has a slight wet bias for low precipitation values, and dry bias for high ones. The mean distri-

bution of annual-average precipitation across stations is also satisfactory.
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In summary, ERA/MRCM shows satisfactory performance in simulating both the average and

the inter-annual variability of winter precipitation over the NWAIP domain. Even though

GCM biases translate to the downscaled simulations, the improved representation of topogra-

phy helps to compensate in part for GCM’s dry bias during the wet season.

Figure 5-7: Spatial distribution of 30-year climatology of DJF average 2-meter air tempera-
ture in (a) TerraClimate, (b) ERA/MRCM, (c) ENS/MRCM (ensemble mean of MRCM sim-
ulations) and (d) ENS_BC/MRCM (ensemble mean of bias-corrected MRCM simulations).
Domain-averaged values over land are indicated at the top left-hand corner of each plot.

The spatial distribution of winter surface temperature is correctly simulated over the do-

main, despite a slight warm bias along the coasts and cold bias over the desert (Fig. 5-7-a,b).

Domain-wide averages are within each other’s uncertainty bounds. The cold bias over desert

areas has been pointed out by Pal and Eltahir (2016) in their analyses over the Arabian

170

��������������������������		�	��	�������������������
���




Peninsula, a region of similar climate to the Sahara Desert. Although, like them, we force

the surface albedo and emissivity in the MRCM runs to equal observed values inferred from

NASA’s SRB datasets, persistent residual biases over deserts are still possible. In addition,

the land surface scheme IBIS used in MRCM also tends to underestimate ground temperature

in dry areas free of vegetation. Daily temperature at available stations is also particularly well

simulated, generally within the bounds of measurement error, and for both annual cycles and

daily variability (Fig. 5-8). Performance in capturing day-to-day variability is slightly lower

along the coasts (mainly the Essaouira, Tangier and Saniat Rmel stations), likely due to the

strong gradients of weather variables between land and ocean at the 12km scale, particularly

water vapor due to its important role in the radiative balance.

5.4.2 Verification of bias corrected MRCM runs

Before analyzing future projections, we also validate the performance of the bias corrected

GCM-driven MRCM runs (ENS_BC/MRCM) for the reference period, by comparing their

results with those from ERA/MRCM and with observations. Figures 5-9 and 5-7 show the

spatial distribution of the 30-year monthly precipitation and surface mean temperature clima-

tologies for the winter season (DJF) derived from TRMM and TerraClimate, ERA/MRCM,

ensemble mean of three MRCMs (ENS/MRCM) and ensemble mean of three bias-corrected

MRCMs (ENS_BC/MRCM).

For precipitation, ENS/MRCM shows good qualitative correspondence with the observed

regional distribution (Fig. 5-9). However, the GCM-driven MRCM runs tend to produce

excessive precipitation over higher mountainous regions, particularly over south-central Spain,

like the ERA/MRCM run. Wet biases over mountainous areas are indeed a common deficiency

in dynamical downscaling, as noted also in other studies [234, 98]. The exception here is

IPSL-CM5A-LR, for which the dry bias evident in the GCM output (Fig. 5-3-c) is not fully

compensated by the dynamical downscaling. Although it somewhat accurately reproduces

long-term NAO dynamics and its relationship to Northern Hemisphere climate variability

[264], IPSL-CM5A-LR suffers from an "anticyclonic" bias, with too strong a North Atlantic

subtropical high that blocks cyclonic activity and leads to the observed dry bias [53]. Naturally,
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Figure 5-8: Annual cycle of daily temperature at GHCN stations and corresponding
ERA/MRCM values, corrected for elevation difference with stations using a locally-estimated
daily temperature lapse rate (first and third columns); Deviations from these annual cycles
plotted against each other (second and fourth columns), for all 11 available GHCN stations.
Station names are indicated in top-left-hand corners.
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Figure 5-9: Same as Fig. 5-7, for precipitation.

regional downscaling cannot compensate for such biases in the large-scale circulation. By

comparison with ERA/MRCM and ENS/MRCM, ENS_BC/MRCM is, as expected, in better

agreement with TerraClimate in terms of the spatial pattern and area-averaged precipitation.

Bias-corrected precipitation is still somewhat lower than observations over the High- and Anti-

Atlas (around 8◦W/31◦N, see Fig. 2-1). Due to the sharp topographic gradients and the

scarcity of station data, however, TerraClimate data is undoubtedly less robust in these regions.

Regarding mean surface temperatures, the essential characteristics of the mean DJF pattern

are accurately reproduced in both ERA/MRCM and ENS/MRCM, although again there is a

pronounced cold bias in ENS/MRCM over much of the domain, highest over the desert. After

bias correction, the cold bias still persists but still ENS_BC/MRCM successfully captures the
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observed major characteristics in terms of regional variations and area-averaged values (Fig.

5-7).

Figure 5-10: MRCM ensemble-mean percentage change in (a,b) DJF and (c,d) MAM pre-
cipitation, under (a,c) RCP4.5 and (b,d) RCP8.5, 2071-2100 minus 1976-2005. Mean values
averaged over the five watersheds on Fig. 5-1-b are shown on the left-hand side of each plot.
Dots indicate agreement by three MRCM simulations on the sign of the change.
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5.4.3 Future projections

Precipitation

The spatial distributions of DJF and MAM relative precipitation change under RCP4.5 and

RCP8.5 are shown on Figure 5-10. A pronounced and robust large-scale precipitation decline

over the domain is evident under both scenarios and in both seasons, consistent with the CMIP5

multi-model mean [252] and earlier CMIP5 projections [101]. For the region as a whole, the

drying gradually weakens from southeast to northwest. In winter, regions north of 40◦N even

show slight wetting trends, albeit not robust at all. The African coastline is projected to

experience the largest drying by far (-40/45% under RCP8.5), and quite uniformly too: the

three Moroccan watersheds show very similar changes in all cases (seasons/scenarios). The

southern coast of the Iberian Peninsula is in an intermediate state, with a robust though

weaker winter drying. Under RCP8.5, the drying is about twice as large everywhere compared

to RCP4.5: from 7-24% to 13-46% (Fig. 5-10). In relative terms, the decrease in precipitation

is generally larger during spring, at which time it also extends further north in the Iberian

Peninsula. Indeed, projections suggest somewhat constant winter precipitation amounts over

central and Eastern Spain, but a robust 10-30% decline during spring.

Temperature

Regarding temperature changes, mean surface temperature is unsurprisingly projected to in-

crease over the whole domain under both RCP scenarios, roughly proportionally to the ra-

diative forcing (Fig. 5-12). Similar to the precipitation change, the warming exhibits a pro-

nounced meridional gradient during winter. Temperatures are projected to increase more over

North Africa (by 0.5-1◦C), a possible consequence of its more pronounced precipitation decline

through decreased latent heating, although dynamical trends may also play a role (see Discus-

sion). In winter also, warming trends appear larger over the mountains, especially the High

and Middle Atlas, and the Sierra Nevada (Fig. 5-12-a,b). This enhanced warming may be

connected to the snow-albedo feedback [203, 192], since these areas all possess extensive snow-

packs in the current climate, although this process is not very well resolved at our 12km scale
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Figure 5-11: MRCM ensemble-mean percentage change in (a,c,e) DJF and (b,d,f) MAM (a,b)
precipitation, (c,d) P-E and (e,f) PET under the RCP8.5 scenario, 2071-2100 minus 1976-2005.
Dots indicate agreement by three MRCM simulations on the sign of the change.
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and deserves a more detailed treatment [259]. Rather, since mountain regions receive higher

precipitation amounts during winter, they will experience larger absolute drops in precipita-

tion, and therefore larger reductions in latent heat flux which will impact the temperature

change through soil-moisture feedbacks.

Figure 5-12: MRCM ensemble-mean change in (a,b) DJF and (c,d) JJA surface temperature,
under (a,c) RCP4.5 and (b,d) RCP8.5, 2071-2100 minus 1976-2005. Mean values averaged
over the four regions on Fig. 5-1-c are shown on the left-hand side of each plot. Dots indicate
agreement by three MRCM simulations on the sign of the change.

Summer temperature changes are much higher than in winter (by 1-2◦C). They are char-

acterized by a clear coastline/interior contrast, common to all seasons and scenarios, although

here again mountain regions seem to exhibit enhanced warming compared to plains, especially
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the Atlas and the Pyrénées. As in winter, this may be connected to a reduction in precipita-

tion, here brought by summer convective cells quite common at high elevations in this region

[27]. Lapse-rate effects over the Mediterranean are also believed to contribute to the enhanced

summertime warming [35]. The reduced warming along the coasts is a classic feature of climate

change linked to less pronounced warming of surface air over oceans.

5.5 Discussion: Mechanisms of Regional Climate Change

So far, our downscaling results have been consistent with the existing literature which high-

lighted a pronounced wet-season precipitation decline and enhanced summer warming [59].

However, the improved representation of the complex regional topography can offer new per-

spectives on regional climate changes, particularly to understand the physical mechanisms

behind the projected decline in precipitation. This regional drying is probably the most crit-

ical feature of the climate response to anthropogenic forcing in the Western Mediterranean.

Together with enhanced temperatures, it will drive substantial declines in river runoff and

water availability and severely threaten the habitability of the region.

The analysis of CMIP5 GCM projections concluded that the regional decrease in winter and

spring precipitation followed from enhanced easterly flow under climate change, a feature

linked to the development of a strong anticyclone centered on the Mediterranean (Chapter 4).

The pronounced anomalous that develops over the Mediterranean Basin (Fig. 4-1-a) is highly

robust across models and its magnitude essentially determines that of the regional winter dry-

ing. The associated wind changes impact the hydrology of the whole Mediterranean Basin,

also causing a decline in winter precipitation over its eastern shores. This strong anomalous

high finds its origin in the combination of large-scale shifts in winter planetary waves due to the

strengthening of the mid-latitude jet [231] and to the reduced warming of the Mediterranean

Sea with respect to the surrounding land, which triggers a circulation response characterized

by higher pressure over the region.

Because the Western Mediterranean is characterized by a steep northeast-southwest hu-

midity gradient, between the relatively moist western side of the Atlas Range, which stands
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Figure 5-13: (a) DJF MRCM ensemble-mean historical (1976-2005) 850 hPa specific humidity
(shaded) and circulation (arrows). (b,c,d) MRCM ensemble-mean change in 850 hPa DJF (b)
specific humidity (shaded) and circulation (arrows), (c) temperature and (d) relative humidity,
under the RCP8.5 scenario, 2071-2100 minus 1976-2005. Hatching in (d) indicates disagree-
ment by one of the three models on the sign of the change. The solid black line in (b) is used
to define a regional wind index (see text).
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under oceanic influence, and the dry Sahara Desert to the east (Fig. 5-13-a), changes in aver-

age winds, however small, can significantly impact the regional moisture distribution. Looking

at the MRCM projections, we find definite trends towards a more easterly kind of circulation

in both winter and spring, consistent with the regional picture just mentioned (Fig. 5-13-b).

Average changes in just three models are very similar to the much larger CMIP5 multi-model

mean, underlining the robustness of regional wind trends under continued anthropogenic forc-

ing. Wind changes over North Africa and southern Spain average about 2m/s at 850 hPa; this

must be compared to average westerlies of 1-5 m/s, which is quite weak, even during the wet

season when moisture advection from the North Atlantic is largest (Fig. 5-13-a). Storms that

hit Morocco and the southern parts of the Iberian Peninsula indeed remain quite rare, even

under negative NAO conditions.

The robust shift towards enhanced easterlies, which should lead to enhanced advection of

dry air, is consistent with regional projections of atmospheric moisture (Fig. 5-13-b). The

northwest African and southern Iberian coastlines are located near areas of local minima in

atmospheric humidity increase; the rest of the region, particularly northern Spain and Por-

tugal, exhibit much larger moistening trends. The lowest increase is found over the western

foothills of the High Atlas. Two factors probably combine to further limit the increase in

humidity over this small region. First, the humidity gradient is particularly steep, with the

Atlas acting like a barrier between the very dry Sahara and their much moister western flanks.

Second, a future circulation with more frequent easterlies will result in strengthened descent

of dry air, its moisture having been “squeezed” out as it passed over the mountains. In other

words, this region will become a rain shadow as the prevailing winds change direction. This

interpretation is further buttressed by the enhanced local wetting on the southeastern side of

the Atlas (e.g., around 4◦W-32◦N, Fig. 5-13-b), which clearly points to enhanced removal of

atmospheric water on what is currently the leeward side of the mountain range.

Therefore, for the region as a whole, the circulation shift acts to both increase dry advection,

and to cut off the moisture supply from the Atlantic, consistent with the discussion in Chapter

4 based on CMIP5 projections. Relative humidity, however, is not only dictated by moisture

content but also temperature (Fig. 5-13-d). Regional projections show a stark enhancement

of lower-tropospheric warming in the regions downwind of future wind anomalies, i.e. on
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Figure 5-14: MRCM ensemble mean change in 850 hPa pressure-velocity in (a) DJF and (b)
MAM under the RCP8.5 scenario, 2071-2100 minus 1976-2005.

Figure 5-15: ERA/MRCM mean 850 hPa temperature in (a) DJF and (b) MAM.
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the northwestern flanks of the Atlas Range and Sierra Nevada (Fig. 5-13-c, S2-c). At the

same time, the warming is relatively weaker, by 1-1.5◦C, on the upslope slide, especially the

Saharan Atlas. The geography of the warming and wind change patterns, common to both

winter and spring, suggests that topography-driven anomalous vertical motion is an important

driver. Strengthened easterlies lead to uplift southeast of the mountain ranges (i.e., upwind)

and subsidence on their northwestern slopes (i.e., downwind), respectively associated with

adiabatic cooling and warming. Changes in vertical motion near the boundary layer top are

consistent with this perspective (Fig. 5-14). In fact, the more realistic topography in MRCM

simulations generates stronger subsidence motion and enhanced warming locally (not shown).

While temperature gradients across the Atlas Range are negligible in winter, they strengthen

over spring as the Sahara Desert warms up fast (Fig. 5-15); consequently, enhanced easterlies

likely also contribute to the substantial warming over northwestern Morocco and the Algerian

coastline at that time of year. Other factors, such as the soil moisture feedback or the snow

feedback over the high mountain peaks, may also play a role.

We further explore the role of the regional circulation in determining hydroclimate trends

by defining, as a proxy for the regional circulation, a wind index along the African coastline (see

line in Fig. 5-13-b), where future projections show enhanced easterlies. The value of the index

is defined as the direction (in degrees) in which the wind blows; for example, a westerly wind

will have an index of 0◦ and a southerly wind an index of +90◦. We focus on the November-

April period, the wet season for most of our domain. This index strongly determines to the

likelihood of precipitation over Northwestern Morocco and the southern Iberian Peninsula

(Fig. 11-a), a relationship that, overall, MRCM simulations succeed in capturing (Fig. 5-

16-b, 5-17). Precipitation occurs, as expected, when westerlies prevail (wind index between

-45◦ and 45◦). Similarly, easterlies tend to be associated with dry conditions (index higher

than 135◦ or lower than -135◦). On the whole, westerlies are more frequent, as would be

expected in the midlatitudes during winter. Consistent with regional circulation changes (Fig.

5-13-b), the frequency of northwesterlies decreases across all simulations (by 10-40% across

models), while that of southeasterlies goes up significantly. While westerlies are still the most

frequent circulation regime, southeasterly winds (index between 90◦ and 180◦) become much

more common. Meteorological conditions during southeasterly days are characterized by a
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Figure 5-16: (a) Distribution of November-April daily wind index values from ERA-Interim
(solid black line) and average daily precipitation from TRMM over northwestern Morocco and
the southern Iberian Peninsula (up to 38◦N) in each 30-degree wind direction category (blue
bars). (b) MRCM ensemble-mean distribution of November-May daily wind index values in
the historical (dashed black) and RCP8.5 (dashed red) simulations, and relative change in the
frequency of each 30-degree wind index category for the three MRCM runs (colored bars).
(c,d) MRCM ensemble-mean average 850 hPa (c) specific humidity anomaly (shaded) and
wind values (arrows) and (d) temperature anomaly, during "southeasterly days" (when the
wind index is between +90◦ and +180◦) in historical simulation. Hatching in (c,d) indicates
disagreement by one of the three models on the sign of the anomaly.
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substantial atmospheric moisture deficit over the Iberian Peninsula and along the northwestern

African coastline (Fig. 5-16-c), and the wind pattern is very similar to the future projected shift

(Fig. 5-13-b). Additionally, southeasterly days exhibit warmer-than-usual temperatures over

the same regions with moisture deficit, and cooler-than-usual temperatures on the upwind

side of the Atlas and Sierra Nevada, a pattern highly similar to the projected temperature

change (Fig. 5-16-d and Fig. 5-13-c). This confirms the hypothesis that the circulation

shift is responsible for the increase in moisture deficit and enhanced warming seen in regional

projections. The combined effects of those mechanisms result in a large decrease in lower-

troposphere relative humidity over Northwestern Morocco and Algeria, southern Spain, and

the surrounding ocean (Fig. 5-13-d), from which the precipitation decline follows.

5.6 Analysis of subseasonal extremes

We now move beyond seasonal means to analyze future trends in sub-seasonal climate indices,

more specifically extremes. Extremes are particularly relevant for climate change adaption and

risk, as they tend to be associated with the largest impacts on human systems (droughts, floods,

etc.) Accurate simulations of the distribution of various climate extremes is still challenging

for most global and regional climate models. Therefore, robust projections of future risk from

such extremes require station data for the validation of historical runs and their bias-correction.

However, station data is by definition available only in specific locations that do not cover the

whole simulation domain. Point locations are not enough to evaluate risks from sub-seasonal

climate extremes. Rather, we would prefer to have access to the corresponding spatial field,

which requires moving from a univariate to a multivariate perspective. Recent years have seen

substantial developments of spatio-temporal statistical models for weather extremes, e.g. in

the case of extreme rainfall [54, 243, 218]. All rely on extreme value statistics, the branch of

statistics that applies to extremes of random variables. In particular, max-stable models have

emerged as a reliable tool to model extreme fields from pointwise measurements while taking

spatial relationships and dependence into account. In the following, we apply max-stable

models to infer future risks of droughts over northwestern Morocco. We also analyse extreme

warm days during the growing season, for which however station data is not sufficient to fit
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spatial models. The selected indices for extremes are relatively simple and are not intended

to cover all weather extremes potentially relevant for agriculture. Rather, we analyze them in

the spirit of a proof of concept which could be developed further according to specific needs

formulated by local stakeholders.

Figure 5-17: (a) Distribution of November-May daily wind index values from ERA-Interim
(solid black line) and average daily precipitation from TRMM over northwestern Morocco and
the southern Iberian Peninsula (up to 38◦N) in each 30-degree wind direction category (blue
bars). (b,d) Same as (a) but with data from (b) MPI-ESM-MR, (c) IPSL-CM5A-LR and (d)
GFDL-ESM2M, and with the addition of the RCP8.5 wind index distribution (solid red lines).
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5.6.1 Extreme values statistics and max-stable models

Univariate extreme value theory is well-developed and an introduction to it can be found for

instance in Coles (2001) [47]. What is important to note here is that block maxima Mn of a

univariate time series (i.e. maxima taken over successive and exclusive time slots, like years),

under certain assumptions of convergence, will in the asymptotical limit of large blocks follow

a Generalized Value Distribution (GEV) with a cumulative distribution function expressed as:

P (Mn ≤ y) = exp

[
−
{
1 + ξ

(
y − µ

σ

)−1/ξ
}]

(5.1)

for all y such that 1 + ξ
(
y−µ
σ

)
> 0 and where σ is called the scale parameter, µ the location

parameter and ξ the shape parameter. ξ provides information about the tail of the distri-

bution: the ξ > 0, ξ = 0 and ξ < 0 cases are respectively referred to as heavy-, light- and

bounded-tailed cases. In environmental sciences, extreme temperatures are an example of a

bounded-tail variable, while heavy precipitation is one of a heavy-tailed variable.

Max-stable models (or processes) are a natural extension of univariate extreme values to con-

tinous space with dependence between variables. If s is our variable of space (e.g. latitude

and longitude), a max-stable process Z(s) can be formulated as

Z(s) = max
i≥1

ζif(s− Yi) (5.2)

where (ζi, Ui) are points of a Poisson process on (0,+∞)×Rd (here we take d = 2) with intensity

measure ζ−2dζdu and f is a probability density function on R2. Different choices for f yield

common models such as the Brown-Resnick or extremal-t models [54]. This representation

allows for a rough understanding of the statistical object. The Yi can be interpreted as centers

for the location of different extreme events, whose shape in space is defined by f (think of

a Gaussian surface on R2), and ζi characterizes the intensity of that extreme event. A max-

stable model then emerges as the maximum value, in each point of space, of the infinite number

of values obtained from each extreme event at that particular location. One simple way to

understand this is to think of Yi as "heatwave" centers, f as the heatwave "shape" and ζi as
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its magnitude: over a given region, the maximum temperature field observed in a season will

indeed be the field of maxima obtained from all possible heatwaves over that region. The main

advantage of using a max-stable model is that it captures the spatial dependence of extremes.

Therefore, it allows to accurately simulate fields of extreme variables based on information at

only a few specific locations.

In a max-stable model, marginal densities (at station locations) follow a GEV distribution

(5.1). Checking that observations are consistent with this implication is therefore an important

step to validate the use of a max-stable model. Spatial covariates, like elevation or latitude,

can be incorporated into the model as explanatory covariates for the σ and µ parameters in the

GEV marginals (ξ, being more difficult to estimate, is usually taken as constant [54]). We select

several potential such covariates (latitude, longitude, elevation, mean annual precipitation and

distance to the coast) and select the best model using a stepwise regression framework in

which the best covariate is selected at each step until no more improvement to the model

is found [250]. "Best" is defined by the Takeuchi Information Criterion [218]. We also test

different model classes (Brown-Resnick and extremal-t). The model is fitted by maximizing the

corresponding composite likelihood [243], for which we use here the SpatialExtremes R package

[207]. The package also allows to simulate from the model once fitted – we simulate here 1000

random extremal fields to calculate median CDD values and probabilities of maximum CDD

being above various thresholds.

5.6.2 Future drought risk

We define drought extremes as the maximum number of consecutive dry days (CDD) between

November and April, or roughly the growing season in Morocco [14] (see section 5.2), with

a threshold of 0.5mm/day of precipitation to separate dry from wet days. We focus on the

northwestern part of Morocco only, bounded by the Atlas Range and Rif mountains (see inset in

Fig. 5-19-a), where almost all of the country’s agriculture is concentrated and which include

88 of the 90 available precipitation stations. The statistics of the corresponding dry CDD

series all closely follow GEV distributions (Fig. 5-18-a), which justifies the use of max-stable

processes to model their dependence in space.
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Figure 5-18: (a) Observed maximum CDD quantiles against quantiles estimated from a fitted
GEV distribution for each of the 88 stations. (b) ERA/MRCM maximum CDD quantiles
(original: blue; after bias-correction: red) against station quantiles, for all 88 stations.

Compared to station data, ERA/MRCM suffers from a wet bias which leads to shorter dry

periods, but which is substantially reduced after bias-correction (Fig. 5-18-b). Model fitting

indicates that an extremal-t process with µ = µ0+µ1×latitude+µ2×longitude+µ3×elevation

and σ = σ0 + σ1 × latitude yields the best fit. For the extremal-t process, the f function of

equation 5.2 is defined as f(x) = cν max (0,W (x)) where W (x) is a stationary Gaussian process

and cnu =
√
π2−(ν−2)/2Γ

(
ν+1
2

)−1 where Gamma is the Gamma function [218].

The max-stable model succeeds in capturing the dependence between stations (Fig. 5-19-b).

Simulated fields of maximum CDD highlight the wet north/dry south pattern also clear in

station data (Fig. 5-19-a). Median maximum dry periods in the northern tip of Morocco are

typically around 25-30 days, but 35-40 days south of 32◦N. Individual stations deviate from

the mean pattern, which also exhibits less small-scale variability than station values, which

is unsurprising since local effects that matter at the station scale (rain shadows, exposure,

inter-annual variability) are not taken into account in the model.

We now apply the same procedure to bias-corrected MPI and GFDL MRCM runs: max-

stable models are fitted to each of the six runs (two models and three scenarios). As expected

from the overall drying tendency projected for the whole region (Fig. 5-10), median maximum
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Figure 5-19: (a) Median of maximum November-April CDD length over northwestern Morocco,
as estimated by a max-stable model fitted to ERA/MRCM bias-corrected data at station
locations (shaded contours) and in observed station data (filled circles). The topleft inset shows
the location of the analysis region within Morocco. (b) Percentage of stations experiencing a
maximum CDD length longer than N days as a function of N , in station data (median: blue
diamonds; 95% confidence interval: shaded light blue), bias-corrected ERA/MRCM (red +)
and historical bias-corrected MRCM runs (MPI+GFDL; median: dashed black; range: shaded
gray).

CDD values will increase over the domain (Fig. 5-20). The increase is quite uniform under

RCP4.5 (Fig. 5-20-a), at about +6 days, but displays a clear north/south gradient under

RCP8.5 with drying decreasing with latitude. Changes in this second scenario range from

+8/12 days to the north to +14/18 days to the south.

Median values are informative, but say nothing about the tail of the distribution, in this

case particularly dry years that have the potential to annihilate rainfed crops. In the current

climate, the likelihood of experiencing at least one full dry month during the growing season

is about 60% to the south of the region, and only 30% to the north (Fig. 5-21-a,b,c). Despite

its weak changes in median CDD values, the RCP4.5 scenario would increase that probabil-
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Figure 5-20: Change in median maximum November-April CDD length over northwestern Mo-
rocco, as estimated by a max-stable model fitted to bias-corrected MPI and GFDL MRCM data
at station locations (MPI+GFDL average, shaded contours) and in bias-corrected MPI/GFDL
data at station locations (filled circles), under (a) RCP4.5 and (b) RCP8.5.

ity to above 50% of the whole region. RCP8.5 would make it a quasi-certainty everywhere

south of 33◦N. The occurence of two consecutive dry months is extremely rare in the present

climate, but would increase significantly to preoccupying levels under RCP8.5, becoming a

twice-in-a-decade event over three quarters of the region (Figs. 5-21-d,e,f and 5-22). The two

simulations (MPI and GFDL) show reasonable agreement regarding their projections, less so

for the RCP4.5 scenario (Fig. 5-22). Both highlight the large projected increase in the risk of

very long droughts, even under the mitigation scenario.

These projections have important implications for the region’s agriculture. In the current

climate, crop failures are already common in the dry plains near Marrakech (31-32◦N) – as

evidenced by the dry 2018-2019 and 2019-2020 seasons and the corresponding severe drops

in crop yields. Importantly, our results suggest that conditions prevailing there today will

become the normal for the north as well, which may therefore enter a state of quasi-permanent

water shortages. Rainfed agriculture, already marginally productive in the south, will become

all but impossible – at least for important rainfed crops like cereals – while yields to the north
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may decline as droughts become more frequent and severe. Morocco’s planned $8bn "Water

Highway" project will also undoubtably be severely impacted with water surpluses in the north

becoming scarcer and smaller [73]. Significant adaptation measures will be required, such as

the transition to drought-tolerant crops, the development of tree crops like olives and improved

management of water for irrigation.

Figure 5-21: (a-c) Probability of a > 30-day long maximum CDD length between November
and April in the (a) historical, (b) RCP4.5 and (c) RCP8.5 scenarios, as inferred from the
fitted max-stable models (MPI+GFDL average). (d-f) As (a-c), but for a 60-day threshold.

5.6.3 Extreme temperatures in future climate projections

We now turn our attention to April-May daily temperature extremes in Morocco and their

future distribution under climate change. These extremes are of particular relevance for agri-
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Figure 5-22: Left axis: Fraction of area (see Fig. 5-19-a) experiencing a maximum CDD length
larger than N days as a function of N (dashed lines; black: historical; purple: RCP4.5; red:
RCP8.5). Right axis: Relative change in that same fraction, as a function of N (solid lines;
purple: RCP4.5; red: RCP8.5). For both axes shading represents MPI-GFDL inter-model
range.

culture, since they occur at critical periods of crop growth (grain filling for cereals, which

account for 55% of all Moroccan arable land, for instance) and can therefore have particularly

negative impacts on yields [102]. Unfortunately, the 11 temperature stations available are not

enough to fit realistic max-stable models and capture the spatial dependence of temperature

extremes. ERA/MRCM accurately simulates the distribution of daily temperatures and much

of its variability (Fig. 5-8), but tends to overestimate temperature extremes by several degrees

(Fig. 5-23-a). Thus, relying on uncorrected ERA/MRCM daily temperature values may be

justified when analyzing the distribution as a whole, but not when considering extreme val-

ues for which bias-correction remains necessary. Therefore, we limit our analysis to station

locations only.

In the current climate, almost all April-May maxima fall in the 19-30◦C range (Fig. 5-24).

On average, in a given year, less than 5% of stations experience at least one day with an

average of more than 30◦C. This is projected to change significantly under future scenarios.
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Figure 5-23: (a) April-May daily average temperature maxima at GHCN stations and corre-
sponding maxima in the ERA/MRCM simulation, before (blue) and after (red) bias-correction.
(b) Same as (a), but for the quantiles of the two distributions.

In RCP4.5, as average April-May temperatures at all stations increase by about 2.3◦C, the

median for extremes increases by +3◦C and above-30◦C extremes now impact 20% of all

stations, a four-fold increase relative to historical levels (Fig. 5-24). For RCP8.5, an eight-fold

increase is projected. More worryingly, above-25◦C extremes will become almost inevitable

under RCP8.5, and extremes of 35◦C or more, never observed yet in the historical climate

would become a once-in-a-decade event. Daily averages of 35◦C are very high for that time of

the year and, as stated in section 5.2, approach the upper tolerance threshold for crops like

wheat. In addition, as precipitation becomes scarcer and droughts more frequent, soil moisture

feedbacks may even enhance these extremes beyond the projections.

It is important to note that we do not model the dependence structure of the temperature

extremes across the stations, and therefore we make the implicit assumption that MRCM is

able to correctly simulate that dependence compared to observations. This is not a given and

a more advanced analysis of temperature extremes for the region would require testing that

hypothesis, possibly with spatial GEV models. With so few stations, however, only a crude
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Figure 5-24: Fraction of stations experiencing a maximum April-May daily average tempera-
ture higher than x as a function of x, in observations (diamonds), and the historical (black),
RCP4.5 (purple) and RCP8.5 (red) simulations. For the MRCM simulations, dashed lines
represent three-model (MPI, GFDL, IPSL) medians and shading the three-model range.

modeling of that dependence would be possible, and efforts should rather be put in collecting

more station data with the relevant Moroccan organizations.

5.7 Summary and conclusions

The results of this chapter underline the high vulnerability of the Western Mediterranean to

climate change, and Morocco in particular. Future projections obtained by downscaling coarse-

resolution output from carefully selected GCMs show a severe precipitation decline over much

of the region during the wet season, and strong warming during summer, especially in conti-

nental interiors. In particular, we find that even under a substantial mitigation of emissions,

20-30% of wet season precipitation could be lost by the end of the century, a severe impact

on the potential for agriculture in the region. We can expect that the future changes in net

precipitation (accounting for evaporation) will follow those of precipitation [246], since evap-
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oration in the NWAIP tends to be more constrained by water availability than by incoming

energy. Further analysis using either hydrological models or simple runoff coefficient estimates

could provide more detailed estimates of the decline in river flow for the region.

In addition, the analysis of monthly temperature projections shows widespread, severe warm-

ing throughout the year, reaching dangerous levels in the summer. For the coast, where most

of Morocco’s largest cities are located, mean monthly temperatures may reach extremes of

37◦C under the RCP8.5 scenario, a 7◦C increase compared to the present-day distribution.

Inland cities currently regularly experience mean temperatures well above that threshold, but

the relative humidity is much lower there than on the coast, where it remains high even at the

peak of summer. This means that summer days may become significantly more uncomfortable

in cities like Rabat or Casablanca. This large temperature increase, even under a mitigation

scenario, could have significant impacts on Morocco’s economy, notably its tourism and agri-

culture. Enhanced drought and temperature extremes during the growing season and near

harvest threaten to impact cereal yields. Our downscaling of climate change over Morocco

may help refine assessments of impacts on agriculture and help develop informed adaptation

strategies in future research.

These trends are consistent with GCM projections of future Mediterranean winter drying and

enhanced summertime warming, though GCM deficiencies may cause the latter to be overesti-

mated [23]. Still, the high resolution of our projections allows us to shed light on the physical

mechanisms responsible for the remarkably robust projected decline in wet-season precipita-

tion over the Western Mediterranean. The vulnerability of the region is due to its geographical

location. Large-scale circulation trends put it downwind of a large and very dry desert, and

of high mountain ranges, causing enhanced advection of dry air and adiabatic warming which

result in substantial drops in relative humidity and precipitation. The substantial role played

by fine-scale topography and its interaction with regional circulation change make a strong

case for the use of high-resolution models in the region. While the selection of GCMs for

downscaling could be improved upon, the identified physical mechanisms behind the drying

appear robust enough to be found in all regional simulations. Their better understanding

that follows from our results may help further constrain the spread of Western Mediterranean

future projections.
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Chapter 6

Dynamics of seasonal snowpack over the

High Atlas in the present climate

C⃝ Elsevier 20201

6.1 Introduction

While average annual precipitation hardly reaches at best 500mm over Morocco’s agricultural

plains, the Atlas Mountains, which rise up to 4000m high, usually receive up to twice that

amount, most often in the form of snow between November and March [32]. Consequently,

mountain precipitation is a major source of freshwater for the country, especially its agriculture,

which accounts for 90% of all water use. The melting of the winter snowpack during spring

substantially contributes to river discharge — up to 50% in some local catchments [32], filling

dams beyond the wet season and allowing for continued water use and irrigation until the

end of the growing season in May. Infiltration of mountain runoff also accounts for much

of the aquifer recharge, on which agricultural activities in the fertile plains at the foot of

the Atlas critically depend [41]. Yet, although the importance of the mountain snowpack

for water resources is well-established, much remains unknown about its characteristics and

1This chapter is an edited reproduction of Tuel et al. (2020d) [249].
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spatio-temporal dynamics.

Accurate estimates of Snow Water Equivalent (SWE) fields in the High Atlas are necessary to

improve our understanding of the regional hydrology and thus water resources management.

In addition, assessing the sensitivity of the regional snowpack to meteorological and climate

variables is critical in order to project its response to climate change, which is expected to

bring warmer and much drier conditions over Morocco. The scarcity of ground measurements,

combined with the complex regional topography and the large spatio-temporal variability

in hydroclimate [77, 251], create significant challenges to snowpack monitoring, modeling and

estimation at the basin scale. Satellite-based snow cover maps can provide a good first estimate

of the extent and temporal evolution of the snowpack, as was shown for the Atlas Mountains

[165]. Where enough station data are available, complex physically-based snow models that

resolve the energy balance at the surface, and may even include several snow layers [155,

115, 29], are usually preferred. Recently, Baba et al. (2019) applied SnowModel, a physical

snowpack evolution model based on the snow energy balance, to simulate snowpack dynamics

in the Rheyara catchment of the High Atlas, outside our study zone, down to a resolution of

8m [13]. Their approach was made possible by the small size (220km2) of the catchment and

its relatively high density of weather stations. The large data requirements of such models,

however, make them less applicable over large areas, where even basic data like temperature

are often missing. Therefore, essential questions remain unanswered for the High Atlas: most

importantly, how much water is stored in the snowpack? And how does this amount vary in

space and time?

At the catchment scale, conceptual, distributed snow models, typically based on simple

parametrizations of melt as a function of temperature, and forced with remotely-sensed data,

spatially interpolated station data or analytical mesoscale model output, can yield useful results

[169, 43, 201]. When ground data are particularly scarce or unavailable, one possibility is to

resort to remotely-sensed snow cover maps and reconstruct SWE backwards in time using the

observed snow fraction time series at each grid point as constraints [179, 202]. An advantage

of this approach is that it only requires temperature as input if no new snowfall accumulates

after peak SWE; on the downside, it can only reconstruct SWE during the melt phase, is not

useful to make SWE projections and is also very sensitive to biases in snow cover data [180].
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Often, forward configurations in which precipitation is partitioned between rain and snow and

accumulated snowfall stored as SWE are preferred [202]. In their simplest form, empirical

snow models only require temperature and precipitation, although more complex formulations

involving radiative fluxes are also available [117, 83]. Several previous studies that relied on

station measurements have shown that they were able to satisfactorily estimate snow accumu-

lation and melting in various climate zones, including the High Atlas [83, 29, 28]. Such models

have also been successfully applied to reconstruct SWE fields in various Mediterranean-climate

regions [229, 103, 75, 77]. However, station data are often missing, which has led to increased

interest in the applicability of gridded climatological datasets, like climatological reanalyses

(e.g., ERA-Interim [55]), station-based interpolated datasets or satellite-based products, to be

used as input to snow models [181, 230]. However, questions still remain as to their accuracy

to represent fine-scale conditions in complex topography, especially precipitation maxima near

mountain peaks [181]. To circumvent that problem, reanalysis data can be downscaled to

finer resolution with regional climate models [273], an approach that has proved successful

over several mountainous regions (Alonso-González et al. 2018 [8] and reference therein). The

forcing datasets can suffer from numerous biases, however, especially precipitation, which in

complex terrain typically exhibits strong spatio-temporal variability that is hard to capture.

Regional models can be unreliable since precipitation relies on parametrizations that require

observations as input, and gridded satellite-based precipitation products, like TRMM [126],

CHIRPS [87] or GPM [125], are often the only estimates available. Such products usually

tend to underestimate snowfall and wet season precipitation in mountain regions [56, 109],

which may bias the results, particularly since parameter fitting of empirical snow models is

typically highly sensitive to input uncertainty [85, 110]. Few studies seem to rely on satellite-

based precipitation, preferring model-simulated precipitation [273, 8] or global station-based

products [181], when direct interpolation from local stations is not possible. In addition, one

downside of previous such studies is the absence of explicit sublimation fluxes. Yet, because

the High Atlas has a particularly arid climate, latent heat fluxes are significant: locally, 25-

45% of accumulated snow has been found to be lost to sublimation [224, 157]. Sublimation is

known to vary significantly in space, especially in complex mountain regions [238]. Any snow

model applied at the basin scale in this area should therefore include latent heat fluxes, which
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requires additional meteorological information, notably atmospheric humidity.

In this chapter, we aim to estimate the spatial and temporal distributions of snowpack

water content and sublimation in a large area of about 13,000 square kilometers in the High

Atlas, using a distributed physically-based snow model constrained by a combination of topo-

graphical data, remotely-sensed data, and meteorological data dynamically-downscaled down

to 12 kilometers. In addition, we model sublimation explicitly to provide the first estimate of

the spatial distribution of latent heat fluxes in the High Atlas. Our focus is the Oum-Er-Rbia

watershed (Fig. 2-1), one of Morocco’s major agricultural regions and an important producer

of hydropower, which receives the most snowfall among all the country’s main watersheds

[165] and depends almost exclusively on mountain precipitation. Satellite-based snow cover is

used as a constraint in order to estimate snow model parameters. While previous studies have

suggested that the strong spatial variability of Atlas snow cover warranted <500m resolution

[13], we select a resolution of 1km for our model, based on data availability and computing

power. Despite this limitation, snow modeling at such a resolution and spatial scale has never

been attempted for the Moroccan Atlas. Our aim is to capture the main features of variability

in snow cover and provide a first order characterization of the snow water balance of the basin.

We demonstrate how the scarcity of ground data, which has been a major obstacle to inves-

tigating snow processes in the High Atlas, can be partly overcome by using remotely-sensed

meteorological variables and downscaled climate reanalysis data to gain important insights

into snow water balance in a semi-arid region.

6.2 Study Area

The Oum-Er-Rbia, with its 550km length and 3 km3 annual discharge, is one of Morocco’s

major rivers (Fig. 2-1). Its water supports 30% of the country’s irrigated land, 50% of its

hydropower capacity, and provides for the daily needs of seven million people, including two

major cities, Casablanca and Marrakech. It flows northwestward from the northern slopes

of the High Atlas, Morocco’s largest mountain range. Our 13104 km2 study area covers the

drainage basins of four main dams, corresponding to the major tributaries of the Oum-Er-
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Figure 6-1: (a) Annual precipitation over Morocco (TRMM 3B43 V7) and Oum-Er-Rbia
watershed. (b) Study area (solid black line) within the Oum-Er-Rbia watershed (dashed line),
with elevation in shaded contours, main cities (dots), river network and snow station (cross).
The four main dams whose catchments define our study area are shown by red diamonds; from
north to south and east to west: El Hansali, bin-El-Ouidane, Moulay Hassan 1 and Moulay
Youssef.

Rbia, all located at the foothills of the High Atlas (Fig. 6-1). Elevation in the area ranges

from 621m to 3890m, for a mean of 1882m. Vegetation is sparse, consisting mostly of bare

soil and grass and rare shrubs in areas where snow is present [13], with forest cover essentially

limited to the valleys. The area is under a rather continental climate, characterized by a

large amplitude of annual temperature cycles [147]. Temperatures are minimum in January,

when they range from mild (≈12 ◦C) below 1000m to cold (-5 ◦C) above 3000m. Even at

that time, the foothills seldom go below freezing. By contrast, peak summer temperatures,

occurring in July, are very high (35 ◦C) at the lowest elevations, and still quite warm above

3000m (10-15 ◦C) [185]. Conditions are overall quite dry, even at high elevations, where annual

precipitation reaches 800-1000mm, against lows of 250mm in the plains to the west (Fig. 6-1-

a). About 80% of annual precipitation occurs during the wet season, from October to April,

when the region is under the influence of North Atlantic westerlies which bring the occasional

storm systems responsible for most of the precipitation [147, 251]. Above 1500m, snowfall is
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common during the winter months. Persistent snow cover is frequent above 2500m, typically

extends from December to April, and rapidly disappears by the end of May [31], though inter-

annual variability is substantial [165] (Fig. 6-2). Our study area is defined as the combined

catchments of the four main dams within the Oum-Er-Rbia watershed: El Hansali, Bin-El-

Ouidane, Moulay Hassan 1 and Moulay Youssef (Fig. 6-1-b). It encompasses most of the zones

in the Oum-Er-Rbia watershed that receive at least modest snow amounts on average during

the winter.

High Atlas snow cover is characterized by substantial variability in both space and time, a key

feature in arid environments [31]. At the annual time scale, wet season precipitation exhibits a

large inter-annual variability [147], with a coefficient of variation of about 0.3 [251], a variability

that is reflected in seasonal snow extent [164]. Within a season, precipitation also tends to

occur in short and irregular storm events; warm temperatures over a few dry weeks can lead to

complete disappearance of the snowpack even in mid-winter at high elevations [224]. Because

net radiation dominates the snow energy balance [157], snow cover is also highly dependent

on terrain slope and aspect, with bare ground not uncommon even at high altitude [165].

Figure 6-2: (a) December-March average snow cover in the Oum-Er-Rbia basin (outlined in
dashed black), from MOD10A1 v6 (2001-2011). Data outside the direct neighborhood of the
basin is not shown. The study area (see below) is shown by the thick solid black contour. (b)
Annual cycle of snow cover extent in the study area (mean: solid blue line, 90% range: blue
shading).
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6.2.1 Station data

Quality checked snow and weather data are available at the Oukaimeden automatic weather

station, located at 3200m altitude near the Oukaimeden ski resort, about 75km away from the

border of our study region (Fig. 6-1-a) in a similar physio-geographical setting. Daily snow

depth is available for 6 seasons (2003-2006 and 2007-2010), and daily air temperature, relative

humidity and 2-meter wind speed are available from 2003 to 2016, with occasional gaps (5-14%

of the data depending on the variable). 30-minute air temperature was also measured from

2010 to 2018. Daily precipitation data are not available at the station, but only at the nearby

CAF (Club Alpin Français) station located 600m downslope, for the 1989-2010 period.

Figure 6-3: Time series of weekly mean snow depth measured at Oukaimeden station (blue
dots) and fractional snow cover for the corresponding 500x500m MOD10A1 grid cell (black
line). Horizontal bars at the top highlight periods with more than 5% snow cover or 5cm snow
depth.

6.3 Modeling of observed snowpack

6.3.1 Snow model

In Mediterranean mountains, the snow energy balance is largely dominated by radiative fluxes

[29, 157]. Therefore, we select the radiation-derived temperature index (RTI) melt formulation

[83, 84], within the framework of the SNOW-17 model [10]. SNOW-17 simulates snow accu-
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mulation and loss empirically, using meteorological variables to account for the various energy

balance equation terms. The main difference here with the Follum et al. (2015) study is that

we add a sublimation module, based on a bulk-aerodynamic flux formulation. We give here a

brief summary of model structure (Fig. 6-4) and equations; readers are referred to Anderson

(2006) and Follum et al. (2015) for more details [10, 83].

Satellite-based

MRCM

Snow accumulation

Surface energy 
budget

Snowmelt

Snowpack
heat deficit

Precipitation (TRMM 3B43)

Temperature (MODIS)

Cloud cover (MODIS)

Topography (SRTM90)

Wind

Specific humidity

Snow model
Mf, NMFmax, TIPM

Output

Snow Water Equivalent

Snow cover fraction

Melt

Sublimation

Figure 6-4: Schematic of the methodology: Input data, snow model and output.

RTI uses a proxy temperature Trad calculated from the surface radiation balance, instead

204

��������������������������		�	��	�������������������
���




of actual air temperature, to estimate snow melt. It therefore includes spatial variability

in potential melt due to variability in incoming shortwave and longwave radiation, at the

resolution of the topographic data. Trad is given by the following:

Trad =

(
LW↓ + (1− α)SW↓ − LE

ϵsσ

)1/4

(6.1)

where LW↓ is the downward longwave radiation, SW↓ downward shortwave, α snow albedo,

LE the latent heat flux (see below), ϵs the snow surface emissivity (taken to be 1) and σ the

Stefan-Boltzmann constant. Although equation 6.1 neglects many terms of the energy balance

(e.g., ground heat flux, sensible heat flux), at first order, Trad represents the snow surface

temperature that balances net surface radiation and can be interpreted as a measure of the

amount of energy available to heat/melt the snowpack. In particular, Trad can be above 0 ◦C.

To calculate downward longwave and shortwave, we adopt the formulations of Follum et al.

(2015) used in the GHSSA model [62], with the exception that we assume no vegetation cover,

an approximation we make due to the High Atlas’ sparse vegetation. Tree cover is present at

lower elevations (below 1500m), where snow cover is short-lived (a few days at most) due to

relatively high temperatures.

⎧
⎪⎨

⎪⎩

SW↓ = S0KrKatmKcKsKt

LW↓ = σ · ϵa · (Ta + 273.15)4 · (1 + 0.17N2)
(6.2)

where S0=1366 W/m2 is the solar constant, ϵa is air emissivity (taken to be 0.757 when snow is

present), Ta is air temperature, N is fractional cloud cover and the K factors are coefficients of

reduction of incoming solar radiation due to Earth-Sun distance (Kr), atmospheric scattering

(Katm), cloud absorption (Kc), terrain slope and aspect (Ks) and topographic shading (Kt).

The daily cycle of solar radiation is included in Ks. In particular, Kc = 1− 0.65N2.

Snow albedo is parametrized according to the formula proposed by Brock et al. (2000) [34]
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and calibrated for the High Atlas by Boudhar et al. (2016) [29]:

α = 0.8− 0.21 log10(td) (6.3)

where td is the number of days since last snowfall. The albedo of new snow (less than 1 day

old) albedo is set at 0.8; this is a low value but which best fits observations in the High Atlas,

likely connected to the high concentration of mineral dust due to the proximity of the Sahara

Desert [274].

Air temperature Ta is used to determine the phase of precipitation: we assume it will fall as

snow if Ta is below 0 ◦C. Snowpack is characterized by its snow water equivalent SWE (in mm)

and its heat deficit Dt, a measure of the energy needed to bring the snowpack to its melting

temperature (0 ◦C). The heat deficit is expressed in mm of snow water equivalent (Anderson

2006). At each time step, the heat deficit is updated as new snow falls, as snow sublimates or

as energy is transferred from the atmosphere to the snowpack. The change in heat deficit due

to differences between snowpack and air temperatures is expressed as:

∆Dt = NMF · (ATI − Tsnow) (6.4)

where ATI is the antecedent temperature index (in ◦C), Tsnow is the snow surface temperature,

and

NMF = NMFmax ·
SW12h

max(SW12h)
· dt (6.5)

where NMFmax is the maximum negative melt factor (in mm/ ◦C/hr), SW12h is the incoming

shortwave radiation at noon on a flat surface on the current day and max(SW12h) its maximum

value across the whole year. dt is the time step (in hours), here chosen to be 6. Snow surface

temperature is parametrized as in Boudhar et al. (2016) [29]: Tsnow = min (0, 0.72 · Ta − 2.47);

an expression based on a linear fit of observed data at the Oukaimeden station. The calculation

of ATI in equation6.4 also involves an empirical parameter, TIPM [10]. In the case of a
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positive latent heat flux LE, the heat deficit is reduced proportionally to the amount of snow

lost by sublimation during the time step:

∆Dt = −
3600LE

Ls
dt

SWEt
·Dt−1 (6.6)

where Ls is the latent heat of sublimation (2.834 MJ/kg).

Melt can occur once the heat deficit reaches 0. If less than 1.5mm of rain occurred during the

previous 6 hours, melt is calculated by

M = dt ·Mf · Trad + 0.0125 · p · fr · Tr (6.7)

with Mf the melt factor, p precipitation (mm), fr equal to 1 if Ta is larger than 0 ◦C, 0

otherwise, and Tr is the precipitation temperature (maximum of 0 ◦C and Ta). Otherwise,

melt is given by

M = dt · σ
{
(Trad + 273.15)4 − 273.154

}
+ 0.0125 · p · fr · Tr+

8.5 · fu ·
dt

6
((rh · esat − 6.11) + 0.00057 · Pa · Ta)

(6.8)

where fu = 0.5 mm/mbar/6hr, rh is the relative humidity, esat the saturation vapor pressure

(mb), and Pa the air pressure (in mb). esat, taken over water for Ta ≥ 0 and ice otherwise,

is calculated as in Alduchov and Eskridge (1996) [6]; Pa is assumed to vary with elevation H

only, given by Pa = 1013.25 ·
(
1− 2.25577 · 10( − 5)H

)5.25588 (in hPa).

Equations (6.4)-(6.7) involve three parameters: Mf , NMFmax and TIPM (used to cal-

culate ATI, see [10]) which must be calibrated. The RTI originally also includes another

parameter, PLWHC, the maximum fraction by volume of liquid water that can be held in the

snowpack, which we take to be fixed at 0.05.

We parametrize sublimation based on the bulk-aerodynamic method, which assumes the latent

heat flux (LE, in W/m2) to be proportional to wind speed and water vapor gradient between
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the surface and a given level z:

LE = FSC · f · Ls · ρ · κ · U(z) · (q(z)− qs)

log (z/z0)
2 (6.9)

where FSC is the grid cell fractional snow cover, ρ is air density (kg/m3), κ is the von Karman

constant, U(z) and q(z) are respectively the wind speed (m/s) and specific humidity (kg/kg)

at height z, qs is the surface specific humidity (kg/kg), z0 is the surface roughness length (set

to 0.001 following Boudhar et al. 2016 [29]), and f is a non-dimensional stability factor based

on the bulk Richardson number Ri = 9.81 (Ta−Tsnow)·(z−z0)
(Ta+273.15)·U(z)2 [9, 37]:

f =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if Ri = 0

(1− 5Ri)2 if Ri < 0 (unstable)

(1− 16Ri)0.75 if Ri > 0 (stable

(6.10)

qs is calculated assuming surface saturation at Tsnow.

The model estimates SWE at each grid cell; we translate it to snow cover using the following

formula:

SC = 0.85 · tanh (k · SWE) (6.11)

with k = 100m−1 [30] and SWE in meters. 0.85 is selected as maximum allowable snow

cover due the quasi-absence of grid-scale (500m) snow fractions larger than 85% in satellite

observations. This likely reflects the strong small-scale variability of snow cover in the High

Atlas at high altitudes, a feature linked to the rockiness of the terrain leading to high variability

in radiative balance [13]. In theory, fractional snow cover is more directly connected to snow

depth rather than SWE. Therefore, a strong assumption of constant snow density is made by

using equation 6.11. We discuss this point further in section 6.4.6.

Due to the large number of grid cells (≈13000) and associated computing time, the three

parameters (melt factor Mf , maximum negative melt factor NMFmax and antecedent tem-
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perature index coefficient TIPM) are fitted by maximizing the Nash-Sutcliffe coefficient [182]

between the observed and simulated snow cover at 250 randomly selected grid points, at alti-

tudes representative of the distribution of altitudes across the whole basin. Each parameter is

calibrated independently across a ranges of values (allowable range, see Table 6.1). To test the

applicability of the RTI-SNOW17 model, and compare our results with [29, 157], we also fit the

parameters to the observed snow depth series at Oukaimeden, using the TRMM precipitation

estimate for the corresponding grid cell. SWE in the model is converted to snow depth (SD)

(to compare with Oukaimeden measurements only) with the formulation used in Bouamri et

al. (2018) [28]:

SD(t) = SWE(t)× ρw
ρ̄s(t)

(6.12)

with ρw=1000kg/m3 (density of liquid water) and ρ̄s is snowpack density, calculated at each

time step t as the average between the density of the previous snowpack (at time t− dt):

ρs(t) = (ρs(t− dt)− ρmax)× exp
{τf
τ

· dt
}
+ ρmax (6.13)

and that of fresh snow ρnew = 67.9 + 51.3 × exp
(
Ta
2.6

)
(in kg/m3)[111]. τf/τ = 0.24/4800 s−1

is a characteristic time of density evolution and ρmax a maximum snow density, equal to 350

kg/m3 [28]. Therefore, the snow compaction ratio will typically evolve between 12:1 for fresh

snow and 1:3 for old snow.

6.3.2 Input data

MODIS snow cover

For snow cover data, we use the MODIS Terra snow cover daily L3 product (MOD10A1) at

500m resolution [105]. The data are available from late February 2000 to present. Snow cover is

detected based on the Normalized-Difference Snow Index (NDSI), calculated from reflectances

in the visible/near infrared and middle infrared. Snow cover fraction is then estimated from
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the NDSI using an empirical relationship fitted to high-resolution LANDSAT images from

various regions of the world (Fig. 6-2). Because of frequent cloud (≈30%) cover in the High

Atlas during the wet season, many data are missing or potentially misclassified. We apply

the filtering algorithm introduced by Marchane et al. (2015) to filter missing data at the

daily timescale, and then average snow cover at a weekly timescale. By comparing to station

data and high-resolution (8m) FORMOSAT-2 images, Marchane et al. (2015) found that,

using this filtering process, the MOD10A1 product was able to accurately reproduce snow

cover area in Morocco’s mountains, including the timing of onset and melt. Figure 6-3 shows

the correspondence between observed snow depth and MODIS fractional snow cover for the

Oukaimeden station.

Topography

Elevation data are derived from the Shuttle Radar Topography Mission 90-meter resolution

dataset version 4.1 (STRM90) [135], and resampled by bilinear interpolation to the MODIS

land surface temperature resolution of about 1km.

Surface temperature

Spatially distributed air temperature is derived from the global MODIS Land Surface Tem-

perature (LST) product MOD11A1 L3 version 6 at 1km resolution [261]. MOD11A1, available

from February 2000 to present, provides an estimate of land surface temperature based on

clear-sky thermal infrared brightness temperatures, twice every 24 hours (daytime measure at

10:30 and nighttime measure at 22:30 local solar time). The underlying algorithms rely on

additional MODIS data for local corrections, including snow and cloud cover, emissivity, or

water vapor. Details of the algorithm can be found in Wan (2008) [260]. The MODIS LST

data were shown to be accurate within 1 ◦C in clear-sky conditions for snow-covered areas

at temperatures above -15 ◦C [104], below which air temperature seldom goes in the High

Atlas. The strong correlation between LST and air temperature Ta has been documented in

a number of studies, notably over snow cover [42, 265], with root-mean square errors of up
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to 4-5 ◦C in cold mountain environments [268]. MODIS LST has been used for distributed

snow modeling with SNOW-17 by Shamir and Georgakakos (2014) [230] in the mountains of

Turkey, who found that LST-derived air temperature was highly correlated to station temper-

ature (r = 0.93) and performed well in estimating snow mass and maximum SWE.

There are three main challenges associated with the use of LST for snow modeling. First, ther-

mal satellite LST data collection is impossible under cloud cover, since cloud-top temperatures

are measured instead [2]. Many LST data are therefore missing and need to be filled. Second,

although highly correlated, LST and air temperature are not the same, and a correction needs

to be applied. Third, LST is measured only twice a day, and we need to infer its daily cycle

in order to run a snow model at 6-hour time steps.

Filling of missing LST values

We fill missing LST values for daytime and nighttime series separately, by first calculating

the daily deviation to an estimated annual LST cycle, and then interpolating missing values

in both space and time. Since fewer than 20 years of data are available for any single day of

the year (and even less for some grid cells due to cloud cover), and since LST can vary wildly

on any given day, we estimate an annual cycle for LST at each grid point by averaging LST

data for each week of the year. Then, we interpolate anomalies relative to that annual cycle as

follows: for each 50km-square in our domain, if less than 75% of data is missing, interpolation

is performed spatially using 2D-kriging with an exponential semivariogram, fitted over the

full area for all days and years available in the week of interest. If not, then interpolation is

performed temporally using an autoregressive model of order 1 fitted to the time series of LST

anomalies at each grid point.

Derivation of air temperature from MODIS LST

In general, the difference between LST and Ta is positive during the day, as solar radiation

warms up the land surface, and negative at night, because the land surface cools faster than

the air (Fig. 6-5-a). The LST-Ta relationship has been extensively studied, both theoretically

and empirically. The general conclusion is that it depends on local variables, such as land

cover, terrain aspect, the presence of snow, or soil moisture (e.g., [175]). Here, we apply a

simple linear correction Ta = a × LST + b inferred from the 30-minute air temperature data
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measured at Oukaimeden station. We select the closest station measurement for each LST

value in the Oukaimeden grid cell, and estimate regression coefficients a, b for each three-

month period October-December, January-March, April-June and July-September, and for

day- and nighttime measures separately. The resulting RMSE is found to be 3 ◦C. The same

correction is assumed valid for the whole basin, admittedly a very broad assumption, justified

here however by our lack of additional station temperature data.

Figure 6-5: (a) Air temperature measure at Oukaimeden station against the corresponding
MODIS LST value, for daytime (red) and nighttime (blue) measurements. (b) Daily cycle
of air temperature at the Oukaimeden station (dashed black line: 30-minute time step; solid
black: 6-hourly) and 6-hourly cycle of MODIS LST-derived air temperature (blue).

Daily cycle

To interpolate the daily temperature cycle to 6-hour time steps (0, 6, 12 and 18 hour local

time), a common approach is to rely on harmonic functions (e.g., [230]). However, daily cycles

of LST and air temperature do not match sine waves (Fig. 6-5-b), as expected from the nature

of sloar forcing over its 24-hour cycle, so we opt for a different formula. At each grid point, the

hour of sunset and sunrise are calculated based on day, slope and aspect [66]. The nighttime

LST-derived Ta is assumed representative for the whole night, from two hours after sunset

till sunrise. This assumption neglects the potential for radiative cooling overnight, but in the
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absence of sufficient ground data it is difficult to quantify. Observed data at Oukaimeden

indicate however that the temperature decline during the night is of small amplitude (Fig. 6-

5-b).. Between sunrise and the daytime LST measure, LST-derived Ta is linearly interpolated.

Between the daytime measure and two hours after sunset, it is interpolated using a second-

degree polynomial with a maximum forced at two hours after solar noon. At the Oukaimeden

station, the resulting LST-derived daily cycle of air temperature is on average within 0.5 ◦C

of the observations (Fig. 6-5-b).

Precipitation

In complex, mountainous terrain with little to no station data, as is the case of the High

Atlas, precipitation data from high-resolution satellite-based products is often the only option

available. A number of such products are available at sub-daily and high spatial resolutions over

the High Atlas: TRMM TMPA (TRMM Multi-Satellite Precipitation Analysis, 3-hourly at

0.25◦ resolution) [126], CHIRPS (Climate Hazards Group InfraRed Precipitation with Station

data, 30-minute at 0.05◦ resolution) [88] and GPM (Global Precipitation Measurement, 30-

minute at 0.1◦ resolution) [125]. All three products involve a combination of remotely-sensed

data (both TRMM and GPM include radar and infrared data while CHIRPS includes radar

data only) corrected with ground data, usually at the monthly timescale. TRMM performs

reasonably well in our region of focus (Figs. 6-6-a, 6-7-a), though it exhibits a dry bias in

mountainous areas, consistent with the findings of Ouatiki et al. (2017) [185]. CHIRPS is

available starting from 1981, which makes it attractive for our study; however, the comparison

of the three available products with stations in and near our study area suggests that CHIRPS

suffers from a significant wet bias (Fig. 6-6-b). In addition, the mean precipitation pattern in

CHIRPS exhibits complex features somewhat inconsistent with elevation (a few local maxima

at low elevations). Monthly correlation with station data is also less good than TRMM (Fig.

6-7-b). As to GPM, its dry bias is obvious (Fig. 6-6-c); however, its spatial structure is similar

to TRMM, with higher resolution, and could potentially be used to disaggregate TRMM data

as a future step.

Therefore, for this analysis, we choose to use 6-hourly precipitation from the TRMM 3B42
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Figure 6-6: November-April mean total precipitation (2000-2010) in (a) TRMM, (b) CHIRPS
and (c) GPM (shaded contours), along with mean relative biases with respect to all available
stations in and near the study domain (filled dots).

Figure 6-7: Monthly precipitation at the four available stations above 1000m altitude, com-
pared to the corresponding (a) TRMM and (b) CHIRPS data.

version 7 dataset [126]. The data covers the period 1998 to present. As just discussed, TRMM

suffers from numerous biases, particularly at high elevations. First, accurately capturing snow-

fall remains challenging, particularly over snow surfaces. Second, in regions with few stations,

gauge correction is uncertain, and made difficult by the topography (e.g., rain shadows). Third,

TRMM generally tends to underestimate wet season precipitation, a particular concern in the
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present case [176, 56, 109, 185]. Station data themselves can also be unreliable, suffering es-

pecially from a tendency to underestimate snowfall because of wind transport (it is unclear

whether the available data for the region were corrected for this, if they even were). The

accuracy of the TRMM 3B42 V7 dataset was evaluated over the Oum-Er-Rbia watershed by

Ouatiki et al. (2017) [185]. While TRMM precipitation is unreliable at the daily timescale, its

quality improves when averaged in space and time; at the annual time scale, they found RMSE

values of 150-250mm for stations at 1600-1800m altitude. A large part of the bias occurs during

summer, when local (small-scale) convective events are badly captured, but underestimation

of winter precipitation is also important in mountain stations. Their results are consistent

with those of Milewski et al. (2015) who analyzed TRMM V7 data over northern Morocco,

including the Oum-Er-Rbia [176]. At the location of the only currently available high-altitude

station (CAF station), TRMM indicates an average of 725mm of precipitation from Novem-

ber to April, against 350mm measured at the station. Still, topography varies substantially

within the 25x25km TRMM grid cell, ranging from 1000m in the valleys to 4167m at the Jbel

Toubkal, Morocco’s highest peak. Despite its deficiencies, TRMM remains our best baseline

to estimate precipitation in this rugged and ungauged terrain.

Cloud cover

We estimate fractional cloud cover N (equation(6.2)) from the Terra MODIS MOD06_L2

version 6 cloud cover dataset [196], available at 5km-resolution from late February 2000 to

present. The data are first linearly interpolated to extract 6-hourly time series. Over the

whole available period, 9 sequences of more than two consecutive days are missing, during

which MODIS LST data are also unavailable. In these cases, we randomly sample cloud cover

values at each grid cell among non-missing values in the same cell and during the same month.

Finally, the data are resampled at the MOD10A1 1km resolution selected to run the model.
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High-resolution dynamical downscaling of ERA-Interim

For humidity and wind data, we rely on the regional MRCM dynamical downscaling of ERA-

Interim (Chapter 5). We extract 6-hourly 2-meter wind speed u, specific humidity q and air

temperature Ta over our domain. Air temperature is used only to compare to the MODIS

LST-derived estimates. Since the 12km resolution is too coarse to account for all the sharp

elevation gradients, we downscale specific humidity and temperature using 1km elevation and

altitude lapse rates estimated at each time step. Wind speed is left unchanged. Within a

12-km MRCM cell with temperature T12, humidity q12 and elevation z12, the downscaling to

the 1km grid cell with elevation z is given by:

⎧
⎪⎨

⎪⎩

Ta = T12 + λ (z − z12)

log(q) = log(q12) + µ (z − z12)
(6.14)

where λ, µ are elevation lapse-rates, estimated from the MRCM output at each time step.

6.3.3 Model configuration and experiments

We run the snow model at a 6-hourly time step over the 2001-2011 period (10 hydrological

years), during which all the forcing data are available, at the native MODIS LST (MOD11A1)

resolution, of about 1000m. While that resolution was suggested to be too coarse to account

for the small-scale variability in snow cover characteristic of the High Atlas [13], we select it

here as a compromise between resolution and computation time. For comparison, 1000m is the

resolution at which SNOW17 is run over the coterminous United States within the Snow Data

Assimilation program [40]. To check our results, we also ran the model at a 500m resolution

over the whole basin, and found no significant difference with the 1km experiment.

To test the sensitivity of the results to uncertainties in the forcing data, specifically tem-

perature and precipitation, we fit the snow model under several configurations. First, three

experiments in which an offset of respectively -3, 0 and 3 ◦C is applied to the LST-derived

air temperature, with precipitation kept constant. We refer hereafter to these experiments
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as "LST-3", "LST+0" and "LST+3". The "LST+0" experiment is also considered to be the

control experiment. Second, in the fourth experiment ("TRMM+33%") TRMM precipita-

tion is amplified by 33%, under unchanged LST-derived air temperature, to compensate for

a potential negative bias in TRMM data. Finally, we also assess the influence of the choice

of SWE-snow cover relationship by fitting the snow model to a more conservative version of

(6.11): SC = 0.8 · tanh (k · SWE) with k = 40 (the two relationships can be compared on Fig.

6-10-b.). We refer to this experiment as "SC40". Optimized model parameters are determined

for each experiment as described at the end of section 6.3.1.

6.4 Results and discussion

6.4.1 MRCM performance

Figure 6-8 shows the December-March mean daily LST-derived air temperature and the cor-

responding MRCM field. Overall, there is relatively good agreement between the two, with

MRCM colder by 0.92 ◦C on average. While MRCM temperatures undoubtedly suffer from

bias as well, this suggests that the LST correction calculated at the Oukaimeden station and

applied to the whole area reasonably succeeds in capturing the overall magnitude of surface

air temperature during the wet season. For the most part, the two datasets are within 3 ◦C of

each other, but the difference is largely elevation-dependent. MRCM is colder in the valleys

by 1-2 ◦C, and warmer at high elevations, especially where snow cover is present, by 3-4 ◦C

(Figure 6-8-a,b). This is likely due to the lack of snow cover in MRCM (largely absent at

12km resolution) which leads to a warm bias due to snow-albedo feedback, and potentially to

an uncorrected cold bias in the MODIS data due to the presence of snow at high elevation

[230]. Above-zero air temperatures are frequent at high elevations during winter (Ta ≥ 0◦C

47% of the time between December and March at the Oukaimeden station); in such cases, if

snow is on the ground, LST will be colder than the air temperature since the snow surface

temperature will not exceed 0 ◦C. MRCM also fails to capture much of the contrast between

north- and south-facing slopes: these are small scale (<10km) effects unresolved at the chosen
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resolution. Our imposed ±3◦C range around the LST-derived air temperature in the sensitivity

data should therefore be enough to capture the "true" air temperature values.

Figure 6-8: December-March average surface air temperature in our study area: (a) MODIS
LST-derived, (b) MRCM interpolated to 1km resolution with elevation lapse-rates, and (c)
histogram of the difference ((a) minus (b)).

At the Oukaimeden station, the annual cycles of both MRCM and MODIS LST-derived

air temperature are in good agreement, with a slight warm bias for MRCM (+0.5 ◦C) and

insignificant bias for MODIS (+0.12 ◦C), unsurprising here since observations are used to

define the linear correction (Fig. 6-9-a). The spread of daily deviations to each series’ annual

cycle is also well-captured, although here MRCM performs better (RMSE of 1.8 ◦C against 3
◦C for MODIS) (Fig. 6-9-b).

MRCM also performs well for daily surface wind and humidity. The correlation of daily 2-

meter wind speed with station data is quite low (r = 0.18), but is higher at the monthly

time scale (r = 0.59). The distribution of daily wind values also closely follows that of the

observations (Fig. 6-9-c). In addition, daily variability of specific humidity is reasonably

captured (correlation of 0.66, bias of 0.1 g/kg and RMSE of 0.8 g/kg, or 33% of the mean),

which highlights the performance of MRCM and the satisfactory accuracy of the statistical

downscaling.
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6.4.2 Oukaimeden station

The snow model, forced with MODIS LST-derived air temperature, TRMM precipitation,

empirical estimates of incoming radiation and MRCM surface wind and humidity, is fitted to

the observed snow depth value at the Oukaimeden station. With Mf=0.05, NMFmax=2.5 and

TIPM=0.15 (Table 6.1), there is a very good fit between the annual cycles of observed and

modeled snow depth (Fig. 6-10-a). The rapid melt starting in early March is nevertheless faster

in the simulation compared to observations. While inter-annual variability is not correctly

captured, likely due to TRMM biases, weekly fractional snow cover is not far off from the

MODIS estimates (Fig. 6-10-b), even though MODIS represents a larger 500x500m area.

Unsurprisingly, given the characteristic patchiness of snow cover within a grid cell [13], MODIS

snow cover is often smaller than the fractional coverage inferred from the modeled SWE series

(which is itself not perfect). Peak SWE occurs around March 1st, and averages 240 mm in the

simulation, against an observed value of 300 mm [28], a negative bias consistent with that of

TRMM precipitation at high elevations. Sublimation losses average 90mm of water equivalent,

or 21.4 ± 4.6% of snowfall, in good agreement with the 25% estimate of Lopez-Moreno et al.

(2017) obtained for the same station [157].

6.4.3 Snow cover area

The allowable range and calibrated values of the three model parameters for all basin-wide

experiments and the Oukaimeden experiment are given in Table 6.1. Like Follum et al. (2015),

we find that Mf is the most sensitive for the calibration, but that NMFmax is slightly more

sensitive than TIPM . Near the optimal Mf , two or three combinations of NMFmax and

TIPM often yield Nash-Sutcliffe coefficient values not far from the maximum. Thus, while

the calibration of Mf is probably more reliable (it is constrained by the observed disappearance

of the snowpack once the heat deficit has reached 0), that of the other two parameters should be

seen with some caution. In addition, while fitted parameter values for the station experiment

may seem similar to those for the LST-3 experiment, they are obtained by optimizing with

respect to pointwise observed snow depth, and not MODIS snow cover as in other experiments,
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Figure 6-9: (a) Average daily temperature during the snowy season (October 1st–June 1st) at
the Oukaimeden station: observations (red), MRCM (black) and MODIS LST-derived (blue).
(b) Daily air temperature deviations to averages shown in (a): MRCM (black) and MODIS
(blue) against observations. (c) Density of October-May daily wind speed at the Oukaimeden
station in observations (black) and the MRCM simulation (red). (d) October-May daily specific
humidity at the Oukaimeden station: observations against MRCM simulation.

and precipitation at the exact station location is not available either. Snow depth at the station

may also not be representative of conditions prevailing for the 1km grid cell.

At the basin scale, the fitted model reproduces much of the characteristics of the snow cover

distribution as inferred from the MODIS data. The magnitude and variability of snow cover
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Figure 6-10: Results of snow model at Oukaimeden station. (a) Average annual cycle of
snow depth (black: observed; red: calibrated model output). (b) Weekly modeled SWE
against MODIS fractional snow cover for the corresponding grid cell. The dashed black
(respectively blue) line shows the two SWE-snow cover relationships (see (6.11)): SC =
0.85 · tanh (100 · SWE) (dashed, black) and SC = 0.80 · tanh (40 · SWE) (dashed, blue).

Par. Name Unit Range
Value

Station LST+0 LST-3 LST+3 TRMM
+33%

Mf Melt factor mm/◦C/hr 0.001-0.6 0.05 0.06 0.205 0.035 0.08

NMFmax

Maximum
negative melt
factor mm/◦C/hr 0.1-3 2.5 1.2 0.15 2.5 0.3

TIPM

Antecedent
temperature
index par. fraction 0.001-1.0 0.15 0.3 0.91 0.2 0.8

Table 6.1: Model parameters: Allowable range and calibrated values for the RTI-SNOW17
model parameters.

are well approximated, both at the daily and seasonal timescale (Fig. 6-11). Some short-term

peaks in snow cover are underestimated, as in January 2007 (Fig. 6-11-b), or overestimated,

as in March 2009 (Fig. 6-11-c). This is not unexpected given the uncertainty in the forcing

data; many snowfall episodes in the High Atlas, particularly at lower elevations, also occur
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near the freezing point. A small error of even just 1◦C could therefore lead to largely underes-

timate snow cover after a specific storm. One should also remember that MODIS snow cover

is itself an imperfect measure of snowpack extent, even when averaged at the weekly timescale.

Non-missing data is not free of errors and the filtering algorithm implemented here may fail

in certain circumstances (e.g., particularly persistent cloud cover) [13].

Looking at different elevation ranges, we find that mean snow cover and its inter-annual vari-

ability are also well reproduced (Figs. 6-11-d and 6-12), particularly the timing and speed of

snowpack build-up and melt. Still, the model tends to overestimate snow cover at high eleva-

tions (≥2500m) and underestimate it at low elevations. The latter is not particularly critical

since snow cover below 1500m is mostly scarce and short-lived, and stores little to no water

over the winter season. The former, however, suggests an overestimation of the snow water

content, or an inadequacy of our SWE-fractional snow cover relationship. For a given SWE,

we may be underestimating the variability of snow cover below 1km, and therefore falsely

inflating the corresponding fractional snow cover.

6.4.4 SWE distribution and basin-wide SWE volume

Although no basin-wide SWE observations are available, it is useful to estimate the total

snowpack water content inferred by the model constrained by the observed snow cover, as well

as its altitudinal distribution. The distribution of winter temperatures indicates that only

areas above 2500m experience below-freezing average temperatures (Table 6.2). Based on the

MODIS LST-derived air temperature, the fraction of snowfall to annual precipitation ranges

from 2-3% at the lowest elevations (≈800m) to more than 60% near the highest peaks (Fig.

6-13-a, Table 6.2). Areas above 2500m, which account for most of the snowpack, receive about

52% (respectively 75%) of their annual (respectively November-April) precipitation as snow.

Therefore, SWE is essentially concentrated above 2500m (Fig. 6-13-c), an area which covers

about 15% of the whole basin (Fig. 6-14-a).

The average annual cycle of basin-wide SWE is shown on Figure 6-14-b. The build-up of

the snowpack is gradual, starting in early November; a peak is reached around February 1st

followed by melting ending in mid-May. At its peak, basin-wide SWE reaches 150 million cubic
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Figure 6-11: Snow model results for the control (LST+0) experiment. (a-c) Daily snow cover
extent from model simulations (red) and weekly extent from the MOD10A1 dataset (blue)
for three hydrological years (shown topright): (a) 2003-04, (b) 2007-08 and (c) 2009-10. (d)
December-March average snow cover (in %) in model simulations and MOD10A1 data, for all
10 hydrological years of the simulations, at various elevation ranges. (e) Weekly modeled snow
cover extent against MOD10A1 estimates (2001-2011).

meters (MCM), or 0.15 km3 (Fig. 6-14-a). This is a small fraction of cumulative snowfall for the

area, which amounts to roughly 1 km3. Due to the high inter-annual variability of precipitation,

the SWE peak can range anywhere from 50 to 450 MCM, a much larger variability than that

of precipitation. Peak SWE is reached at different times depending on the elevation, however.

Above 3000m, where temperature remain longer below freezing, peak SWE occurs in late

March, right before the onset of melt (Fig. 6-15-a,b). SWE above 3000m represents only
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Figure 6-12: Average annual cycle of snow cover (in %) in the control (LST+0) experiment at
various elevations ranges within our study area: (a) > 3500m, (b) 3000-3500m, (c) 2500-3000m,
(d) 2000-2500m, (e) 1500-2000m and (f) whole area.

20% of total SWE, whereas about half of the basin’s SWE is concentrated between 2500 and

3000m. At lower elevations, snowpack is much less persistent and peaks in January, when

temperatures allow for short-term snow cover.
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Figure 6-13: (a) Annual precipitation over the study area (TRMM 3B43 V7). (b) Fraction
of annual precipitation falling as snow. (c) Mean December-to-March (DJFM) modeled SWE
(in mm).
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Figure 6-14: (a) Cumulative distribution function of basin area (x-axis) and peak SWE (y-
axis) as a function of elevation (shading). Basin area and peak SWE were both renormalized
by their maxima to make the two axes equal. (b) Annual cycle of basin-wide SWE in the
control experiment: mean (solid blue) and 90% range (blue shading).
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Figure 6-15: Average annual cycle of SWE in mm (left axis) and MCM (right axis) in the
control (LST+0) experiment at various elevations ranges within our study area: (a) > 3500m,
(b) 3000-3500m, (c) 2500-3000m, (d) 2000-2500m, (e) 1500-2000m and (f) whole area.
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Elevation
Ann.
prec.

(mm)1

DJFM
prec.

(mm)2

Ann.
snow

(mm)3

DJFM
snow

(mm)4

Snow
frac.
(%)5

Melt
(mm)6

DJFM
Temp.
(◦C)7

DJFM
wind
(m/s)8

DJFM
RH
(%)9

DJFM
SCr
(%)10

DJFM
SWE
(mm)11

Frac.
Area
(%)12

Sublim.
(mm)13

All
192 426 59 81 19 74 5.4 2.6 56 11 7.3 35 7

111/346 312/549 32/108 43/135 12/27 38/124 3/6.9 2.2/3.1 48/71 5/22 2/22 22/55 5/12

≥3500m
264 563 213 347 61 247 -6.4 3.1 60 74 103 100 99

166/530 434/740 130/453 223/533 48/72 148/433 -8.8/-5.2 2.7/3.9 54/79 59/82 24/194 – 75/118

3000-3500m
261 558 188 300 53 244 -4.2 2.9 61 60 71 99 56

160/482 422/704 119/388 186/432 44/62 142/382 -7/-2.9 2.6/3.6 52/76 42/80 18/179 97/100 44/68

2500-3000m
206 452 121 183 40 158 -0.3 2.9 59 32 24 87 25

100/348 338/558 66/241 97/274 29/49 80/240 -3.4/1.1 1.6/3.6 51/75 17/61 6/67 66/99 16/37

2000-2500m
201 443 84 118 26 111 3.2 2.7 57 11 6.3 55 7

108/332 334/552 46/153 56/198 16/36 51/186 0.1/4.7 2.4/3.4 49/74 5/31 1.6/25 19/87 4/13

1500-2000m
186 416 42 50 12 48 6.6 2.5 55 3 1.4 17 2

100/334 291/546 18/91 28/94 8/19 27/92 4.5/8.2 2/2.3 47/69 0.1/9 0.2/5.3 1/49 0/5

Table 6.2: Snow model results and input data, averaged for the whole study area and various altitudinal bands: (1) Annual precip-
itation; (2) December-to-Mach (DJFM) precipitation; (3) Annual snowfall; (4) DJFM snowfall; (5) Fraction of solid precipitation;
(6) Total snowmelt; (7) DJFM air temperature; (8) DJFM wind speed; (9) DJFM relative humidity; (10) DJFM average snow
cover; (11) DJFM mean snow water equivalent; (12) Fraction of area with ≥5% snow cover in DJFM; (13) Total sublimation. For
each elevation range, the top line indicates the 2001-2011 average and the bottom line shows the full range of values.
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As can be deduced from Fig. 6-15, melt is extremely rapid, essentially occurring between

February and May (Fig. 6-16), when temperatures quickly rise above freezing at all altitudes.

However, even during winter, positive temperatures are frequent below 2500m and this is

reflected in non-negligible melt rates throughout the snowy season.

Figure 6-16: Annual cycle of average daily melt rate for all areas with positive (>5%) snow
cover, regardless of elevation.

6.4.5 Latent heat fluxes

The High Atlas is characterized by rather dry conditions, even at high altitudes during winter:

for instance, the average relative humidity between December and March at the Oukaimeden

station (3200m asl) is only 46%. Together with persistent snow cover above 2500m and occa-

sional strong winds (Fig. 6-9-c), conditions are met for large latent heat fluxes. In the control

(LST+0) simulation, we find for the basin as a whole that snowpack losses by sublimation

amount to 0.095 km3 on average, which is small compared to total precipitation (1.9% of

annual precipitation, 2.8% of November-April precipitation) and to the total snowfall (≈9%).

Relative losses increase rapidly with elevation, from only 5% at 2000m to about 30% above

3500m (Fig. 6-17-c). Near 3200m altitude, sublimation removes 20% of the snowpack, not far

from the 25% found by López-Moreno et al. (2017) at Oukaimeden [157]. This difference is still
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Figure 6-17: (a) Fraction of annual precipitation lost by sublimation in the control (LST+0)
experiment. (b) Fraction of annual precipitation falling as snow (black, left axis) and fraction
of snowfall lost to sublimation (blue, right axis) as a function of elevation. Estimated values
for the CAF station and Oukaimeden experimental site are also shown.

large, but given all the uncertainties involved in our analysis may not be significant. Part of it

may be due to the fact that the latitude of our domain is slightly higher and relative humidity

is consequently larger (46% at Oukaimeden vs. 54% at similar locations in our domain). At

12km, the resolution of our downscaled regional climate simulations remains coarse for snow-

pack modeling and therefore wind speed at high elevations may also be underestimated, a

possibility that would require additional wind measurements to verify. Inter-annual variability

in sublimation losses is also substantial: they vary between 18% and 42% above 3500m, and,

even below 2000m, range from 1-5%.

These estimates are naturally very dependent on the wind, humidity and temperature data

used as forcing. They are about a third lower in the LST-3 simulation compared to LST+0,

and half again as much in LST+3, but display the same strong dependence to elevation (Fig.

6-17-d). For instance, above 3000m, 21% of the snowpack is lost to sublimation on average

in LST+0, 14% in LST-3 and 32% in LST+3. The comparison with the CAF station figures

(snowfall is 50% of annual and 68% of November-April precipitation, Fig. 6-17-b) also suggests
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that the MODIS LST-derived air temperature may still be positively biased with respect to

real-world Ta (see Fig. 6-5-b). The higher snow fractions in the LST-3 run are indeed closer

to observed values. Another possibility is that precipitation is preferentially underestimated

when it is solid, a common problem with satellite-based estimates [56, 77], thus automatically

decreasing the fraction of snow to annual precipitation.

6.4.6 Sensitivity to inputs

Figure 6-18: Annual cycles of basin-wide SWE

in the various sensitivity experiments.

Finally, we turn to the sensitivity analysis of

basin-wide SWE to uncertainties in the forc-

ing data and to the SWE-snow cover relation-

ship. Optimal parameters are found for each

experiment so that they all reproduce basin-

wide and elevation-specific snow cover series,

though most (except LST+3 and the SC40

experiments) tend to overestimate snow cover

area between 2500 and 3000m (as in Fig. 6-

12). The build-up of the snowpack is also too

slow in the SC40 run, no doubt due to the

larger SWE required to reach maximum snow

cover (section 6.3.3). However, constrained

as they are by the observed snow cover se-

ries, the various experiments all show somewhat similar basin-wide SWE value, between 120

and 210 MCM at their peaks (Fig. 6-18-c). The potential underestimation of precipitation

does not seem to impact the SWE estimates very much: they are only about 10% higher in

the TRMM+33% experiment than in the control run. However, a 33% correction may not

be enough to compensate for underestimated or even missing snowfall episodes in the TRMM

data; for an improved correction of TRMM biases in this region, additional station data is

vital. The maximum peak SWE is unsurprisingly attained in the SC40 experiment, since it

requires a higher SWE to attain the same fractional snow cover. Even then, we remain within
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the same range of estimates, and it seems fair to say that snowpack in our catchment holds

about 150-175 MCM at its peak.

This still amounts to a significant uncertainty, which is difficult to resolve. An empirical back-

ward SWE reconstruction constrained by the evolution of the snow cover [77] may be useful as a

future step to test the validity of our SWE results, for instance using higher-resolution (<60m)

Sentinel-2 data [91]. Additional station data, even at low elevations, would be helpful to im-

prove temperature estimates. Precipitation biases, however, are more challenging to tackle

with no high-altitude data at hand. Statistical models to correct and distribute precipitation

within a TRMM grid cell based on fine-scale topography may help resolve some of the biases

due to the complexity of the terrain at small scales. Another possibility would be to calibrate

additional parameters in SNOW17 which we assumed as constant here, as for instance the

temperature threshold to define snowfall (0◦C in this analysis) and a precipitation under-catch

adjustment factor [83]. Still, the potential underestimation of precipitation does not seem to

impact the SWE estimates very much: they are only about 10% higher in the TRMM+33%

experiment than in the control run. In the absence of station data, it is difficult to determine

whether this correction is enough to compensate for underestimated or even missing snowfall

episodes in the TRMM data; results by Hashemi et al. (2017) over the United States suggest

that winter precipitation above 3000m altitude may be underestimated by as much as 50%

[109]. For a fixed SWE-snow cover relationship, the impact of precipitation uncertainty on

peak SWE seems small (Figure 6-18-c), though it would matter for melting rates: too much

precipitation at fixed snow cover may lead to overestimation of melt during the cold season.

As discussed previously, sublimation rates are also uncertain, mainly because of biases in air

temperature and surface wind speed. At the highest elevations, we find a rate of 0.65-1mm/day

(Table 6.2), comparable to that measured on Kilimanjaro (0.92 mm/day), where incoming

shortwave and latent heat fluxes dominate the snow energy balance [178]. The low rates found

in the LST-3 experiment seem unlikely based on what is known in such environments [157],

and our 20% estimate above 3000m is probably at the low end of the range. Rates of 45%

were measured on the southward, much drier side of the Atlas, thus setting an upper bound

to what can reasonably be expected in our region. Overall, a 20-35% range is realistic.
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Because our approach uses snow cover to fit the snow model, the SWE-snow cover relation-

ship is a major source of variability in the results, as we see in the case of the SC40 experiment.

In the control formulation, maximum cell snow cover is reached for 5mm SWE, roughly 15-

40cm of snow depth. Increasing that threshold to 10mm as in SC40 increases peak basin-wide

SWE by 60MCM, and therefore the extreme case of a 20mm threshold could potentially bring

the result up to 300MCM, or double what we found in the control experiment. The analysis

of spring runoff volumes could help put an upper bound on that figure.

In addition, as mentioned previously, our assumption of a one-to-one relationship between

snow cover and SWE for an individual grid cell is questionable. Fresh and old snow have

very different compaction ratios (respectively of the order of 1:10 and 1:3), meaning that the

same SWE at different times in the life of the snowpack will be associated with very different

snow depths and likely different fractional snow covers. Initial compaction ratios can also vary

significantly depending on the type of solid precipitation (graupel, sleet, powder snow, etc.),

a detail we do not take into account in this analysis. It is difficult to estimate a priori the re-

spective frequencies of each type of solid precipitation, especially due to the scarcity of ground

measurements in the High Atlas. The difference between snow and graupel could potentially

be resolved by considering the spatial scale of the storm, since graupel is typically associated

with small-scale convective systems and higher radar reflectivity compared to snow. Graupel

also occurs in conjunction with faster upward velocities than for snow (3m/s against 1-2m/s).

Lightning activity in the Atlas is high in May and in October2, which suggests that small-scale

convective activity and therefore the likelihood of graupel would be higher in these months.

Still, even if we assume equations 6.12-6.13 to be valid at all times, our results could be im-

proved by using modeled snow depth from equation 6.12, instead of SWE, to infer fractional

snow cover at the grid cell scale. Such a relationship has not been described for the High Atlas,

but analyses in similar mountain environments could be used as first step. One advantage of

using snow depth as the output variable is that satellite-based snow depth products, based on

Synthetic Aperture Radar (SAR) data, are becoming increasingly available (e.g. as part of the

Sentinel project [154]), and could therefore be used as input for the data assimilation as well.

2See for instance https://ghrc.nsstc.nasa.gov/lightning/data/data_lis_vhr-climatology.html
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6.5 Conclusion

We developed in this chapter the first implementation of a distributed, physically-based em-

pirical snow model at large scale in the High Atlas of Morocco. This region is characterized

by a very sparse station network, and therefore we relied on satellite-based and dynamically-

downscaled meteorological data as forcing for the SNOW-17 model, and compared the model-

simulated snow cover to remotely-sensed snow cover estimates from MODIS. The model accu-

rately captures the distribution of snow cover at various elevation bands as well as its temporal

dynamics. When applied at the Oukaimeden station, results were also consistent. While our

coarse resolution and the numerous uncertainties associated with the forcing data bring im-

portant limitations to our results, we find reasonable confidence in a peak basin-wide SWE

estimate of 0.15-0.175 km3, almost exclusively concentrated above the 2500m altitude line.

We also find that sublimation losses are substantial, ranging from 0.06-0.14 km3 for the whole

basin and amounting on average to 20% of total snowfall above 3000m, in keeping with previ-

ous results [157]. Our results thus offer a first-order estimate of sublimation in the High Atlas,

in absence of even a sparse network of direct sublimation observations. In addition, the model

offers the potential for assessing the sensitivity of High Atlas snowpack to climate change, of

critical importance for the region. Many improvements to our approach are possible, whether

regarding the selection and correction of data or the modeling itself, and the advent of higher-

resolution snow cover estimates with Sentinel-2 [91] will certainly help in this direction [13].

However, as long as station observations remain so scarce, any estimate of snow dynamics in

the High Atlas will remain quite uncertain. In particular, more direct measurements of latent

heat fluxes are necessary to validate sublimation parametrizations and modeled fluxes in this

region.
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Chapter 7

Projections of High Atlas snowpack and

runoff in future climates

7.1 Introduction

The High Atlas is the major source of freshwater for the semi-arid plains of central Morocco.

Much of the discharge of the Oum-Er-Rbia and Tensift, the two main rivers of central Morocco,

comes from the mountainous terrain where they begin their course. In this region, precipitation

essentially falls at elevations above 1000m [32]; below that, it is scarce and evaporation is

extremely high, leading to minimal runoff. Though located in a rather warm region, the High

Atlas rises up to more than 4000m and often experiences below-freezing conditions between

November and March [32]. Consequently, snow is a major component of the regional water

cycle [165, 253]. It accounts for a substantial fraction of annual runoff, up to 50% in some

mountain catchments [32], and for most of the runoff during spring, as the wet season comes

to an end.

Still, climate projections over Morocco happen to agree on robust warming and drying trends

under greenhouse gas forcing. By the end of this century, average winter temperatures in the

High Atlas could be 2-4◦C higher, and precipitation 25-45% lower, depending on the emissions

scenario (Chapter 5). Being already close to the 0◦C isotherm, the High Atlas stands out as
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particularly vulnerable to snow cover loss. However, few studies have analyzed climate change

impacts on the local snowpack and regional water availability. Applying a complex physically-

based snow model to one station snow data series from the Moroccan High Atlas, Lopez-Moreno

et al. (2017) found that Atlas snowpack was somewhat less sensitive to warming and drying

than that in other Mediterranean-climate regions, because of colder snowpack temperatures

associated with high latent heat losses [157]. Still, their results pointed to a decrease in average

snow duration of 25-30% and mean Snow Water Equivalent (SWE) of 30-55% by 2050. By

contrast, the analysis of 12 years (2000-2013) of remotely-sensed snow cover area from the

MODIS satellites yielded few significant trends in snow cover duration across the region [165].

At these relatively short timescales, however, the variability in Atlas snow cover is primarily

determined by the inter-annual variability in wet-season precipitation, itself largely dependent

on the North Atlantic Oscillation [147, 31]. Because precipitation exhibits a large coefficient

of annual variation (0.25), potential long-term climate trends will be difficult to identify in

such short-term series. Only one study tried to quantify the impact of climate change on High

Atlas runoff by taking snow dynamics into account: Marchane et al. (2017) developed runoff

projections for the Rheyara catchment, south of Marrakech and part of the Tensift watershed,

by running conceptual monthly water-balance models incorporating a simple parametric snow

module [166]. They projected a 19 to 63% decline in surface runoff by the middle of the

century, dependent on model and scenario. Therefore, while it is clear that the region is

headed towards a pronounced decline in snowpack and runoff, much remains to be done to

quantify that decline at the catchment level and reduce uncertainties.

In the previous chapter, we described the High Atlas snow water balance by assimilating

remotely-sensed and dynamically-downscaled data into a simple distributed snow model to

reconstruct snowpack within the Oum-Er-Rbia watershed. In this chapter, we build on this

methodology by applying the same snow modeling framework to the regional climate projec-

tions developed in Chapter 5 to assess the future of High Atlas snowpack under anthropogenic

warming. In addition, we quantify the sensitivity of runoff in seven mountain catchments

within the Oum-Er-Rbia watershed to large-scale meteorological conditions, and use the re-

sults to assess the impact of warming, drying and snowpack disappearance on runoff. We

first describe our study area, the data and climate model output used in this study, before
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detailing the runoff modeling framework. Snowpack and runoff projections are then presented

and discussed, before concluding with major results and implications.

7.2 Data and study area

As in Chapter 6, our focus is on the Oum-Er-Rbia catchment, Morocco’s second largest wa-

tershed and a major agricultural center. The Oum-Er-Rbia flows northwestward from the

northern slopes of the High Atlas. Much of its discharge originates from the High and Middle

Atlas, where average precipitation is typically three to four times that over the plains. Snowfall

also regularly occurs above 1000m, and builds a persistent snowpack above 2500m.

Figure 7-1: (a) Map of study area, the Oum-Er-Rbia watershed, with elevation shown in filled
contours. The main waterways are indicated by solid blue lines. Blue diamonds and red
circles indicate the location of precipitation and river discharge stations, respectively. The
seven catchments defined by the discharge stations are indicated by numbers: (1) Tarhat, (2)
Chacha, (3) Ouchene, (4) Tillouguite, (5) Moulay Hassan, (6) Segmine and (7) Tamesmate.
The location of the Oukaimeden snow station, outside our study area, is shown by a black
cross. (b) Annual cycles of precipitation for the seven catchments, based on TRMM data
(1998-2015).
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7.2.1 Hydroclimatological data

Daily discharge measurements are available at seven locations between 1978 and 2015 (Fig.7-

1-a). Each has at most 0.5% of missing data. These locations define the seven sub-catchments

for which runoff will be modeled, from north to south: Tarhat, Chacha, Ouchene, Tillouguite,

Moulay Hassan, Segmine and Tamesmate. These catchments cover most of the area we focused

on in Chapter 6, i.e. most of the area within the Oum-Er-Rbia watershed that receives

significant snowfall. Their average elevation varies from 1460 to 2360m. We remove the

contribution from base flow by subtracting the minimum monthly discharge value for each

catchment and for each hydrological year (September-August). This correction is minor for

all catchments except Tarhat, the northernmost one. It includes the headwaters of the Oum-

Er-Rbia river, and receives a substantial contribution of base flow to its annual discharge. In

particular, the flow at Tarhat remains high during summer (≈35% of its wet-season peak),

likely due to groundwater discharge from deep mountain aquifers. Annual cycles of corrected

monthly discharge are shown on Fig. 7-2-a.

Figure 7-2: (a) Annual cycles of monthly runoff at the seven runoff gauges, after base flow
removal and normalization by catchment area (km2). (b) Boxplot of annual runoff coefficients
for the seven catchments (1982-2011), using ERA/MRCM precipitation bias-corrected with
TRMM data.
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As in the previous chapter, we use the TRMM TMPA (TRMM Multi-Satellite Precipitation

Analysis) 3B42 version 7 dataset [126] as the reference precipitation dataset for the region.

The data cover the period 1998 to present. Milewski et al. (2015) and Ouatiki et al. (2017)

assessed the accuracy of the TRMM 3B42 V7 dataset in the Oum-Er-Rbia and found that,

although unreliable at the daily timescale, it offered satisfactory estimates of precipitation if

averaged in space or time [176, 185]. Annual cycles of TRMM precipitation for the seven

catchments are shown on Fig.7-1-b.

Reference surface air temperature is derived from MODIS Land Surface Temperature (LST)

product MOD11A1 L3 version 6 at 1km resolution [261], as described in Chapter 6. Observed

snow cover area for the region is extracted from the MODIS Terra snow cover daily L3 product

(MOD10A1) at 500m resolution [105]. All MODIS data are available from February 2000

to present. Elevation data are taken from the Shuttle Radar Topography Mission 90-meter

resolution dataset version 4.1 (STRM90) [135], and interpolated to the approximately 1km

resolution of the MODIS land surface temperature data.

7.2.2 Regional climate simulations

We consider the regional climate downscaling projections obtained in Chapter 5. We remind

the reader that the corresponding simulations were run at a 12km resolution using the MIT

Regional Climate Model (MRCM). MRCM is based on the Abdus Salam International Centre

for Theoretical Physics Regional Climate Model Version 3 (RegCM3), but with significant

enhancements of model physics, and notably a coupling with the Integrated BIosphere Sim-

ulator land surface scheme (IBIS). Dynamical downscaling was performed for ERA-Interim

(1982-2011) [55] (ERA/MRCM simulation) as well as three carefully-selected GCMs from the

Coupled Model Inter-comparison Project Phase 5 (CMIP5) [241]: MPI-ESM-MR, GFDL-

ESM2M and IPSL-CM5A-LR, for the historical (1976-2005) and RCP4.5 and 8.5 (2071-2100)

scenarios.

6-hourly wind speed, specific humidity, air temperature, precipitation, and downward long-

wave and shortwave are extracted from the MRCM output over our domain. For all three

GCM-driven simulations, as well as the ERA/MRCM run, air temperature and precipitation
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data are statistically downscaled and bias-corrected at the 6-hourly timescale using MODIS

LST-derived air temperature and TRMM precipitation at their native resolutions as respec-

tive targets, via the CDF-transform method [174]. Bias-corrected of precipitation conducted

as described in section 5.3.4 in Chapter 5. The main difference is that since we consider here

the IPSL-CM5A-LR model, we correct its dry bias at each grid cell by randomly generating

wet days of magnitude drawn from the corresponding distribution of wet-day precipitation in

the TRMM dataset. Reference periods for “perfect” observations are 1998-2011 for TRMM

and 2000-2011 for MODIS. The corresponding periods in the simulations are the same for the

ERA/MRCM, and the 1992-2005 and 1994-2005 periods, respectively, for each of the three

GCM-driven simulations. All bias corrections are performed for the cold (November-April)

and warm (May-October) seasons separately.

Additionally, we use wind speed, downward long- and shortwave radiation and specific hu-

midity from the ERA/MRCM simulation as reference, like in Chapter 6. The corresponding

variables in each GCM-driven simulation are therefore bias-corrected using the ERA/MRCM

data as reference. Specific humidity is further downscaled to the 1km MODIS LST resolution

based on an empirical lapse-rate µ estimated at each time step:

log(q) = log (q12) + µ · (z − z12) (7.1)

where q12 is the specific humidity in a given 12-km resolution grid cell of elevation z12, and

q the downscaled value at elevation z.

7.3 Methods

The methodological framework adopted for this analysis is summarized in Figure 7-3. We start

from GCM simulations from the CMIP5 archive, dynamically-downscaled with MRCM. We

apply bias-correction to the MRCM output, which we then feed into a 1km-resolution snow

model over our study region to reconstruct snowpack under the various emissions scenarios.

Finally, a statistical model is developed for catchment runoff coefficients (RCs), in order to
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make projections of runoff under future climate conditions.

GCM simulation
Historical, RCP4.5

RCP8.5

Downscaling 
with MRCM

(12km)

Bias
correction

Snow model
High Atlas

1km

Statistical Runoff 
Coefficient Model

Figure 7-3: Summary of methodology to assess climate change impacts on snowfall, snowpack
and runoff in the Oum-Er-Rbia watershed.

7.3.1 Snowpack modeling

We refer the reader to Chapter 6 for the detailed description of the snow modeling approach.

The three required snow model parameters are optimized for each historical GCM-driven

run and the ERA/MRCM simulation separately. We look for parameters that maximize the

Nash-Sutcliffe coefficient [182] between the annual cycles of observed (MODIS) and simulated

snow cover at 250 randomly selected grid points within the snow domain with elevations

representative of that of the whole domain. The annual cycles are computed for the 1995-2005

period in the GCM-driven simulations, 2000-2011 period in the ERA-Interim simulation and

2000-2011 period in the MODIS observations. We could also adopt the approach of section 6.3.1

to optimize snow model parameters for ERA/MRCM, since this run represents the "observed"

climate, but we choose to optimize with annual cycles rather to be more conservative and

consistent with the GCM-driven runs. For the future GCM-driven simulations, parameter

values are kept constant, equal to their calibrated values in the corresponding historical run.

7.3.2 Statistical modeling of Runoff Coefficients

While we rely on TRMM as the best gridded daily precipitation dataset available for our

area, its main drawback is that it covers only the post-1998 period. Using TRMM directly

would limit our analysis to a mere 18 years (1998-2015), likely insufficient given the region’s

241

��������������������������		�	��	�������������������
���




high inter-annual variability in precipitation. Therefore, we use the ERA/MRCM precipita-

tion data, bias-corrected with TRMM, to estimate catchment-scale precipitation for the longer

1982-2011 period, during which runoff data are available for all catchments. This allows us

to calculate catchment runoff coefficients (RCs), defined as observed total October-June dis-

charge divided by estimated total October-June precipitation. To assess the robustness of the

results, we also calculate RCs based on CHIRPS precipitation (available from 1981-present).

RCs are modeled across time and space as functions of large-scale hydrological variables by

adopting a panel regression framework. Panel regression allows to enhance the effective size

of a dataset and to obtain more robust estimates of the response to selected covariates com-

pared to more traditional regression approaches [235, 52]. It also allows to account for static

(space-dependent) and time-varying (time-dependent) factors, although here, with only seven

catchments, we do not have enough data to make robust statements about static factors re-

sponsible for the disparity in average runoff coefficient (Fig. 7-2-b). Therefore, we focus on

time-varying covariates, and consider a fixed-effects formulation:

log (RCj,t) = log
(
RCj

)
+
∑

i

βiX
i
j,t + ϵj,t (7.2)

where RCj represents time-invariant, watershed-specific fixed effects (drainage area, land cover,

mean climate), covariates X(i)j,t are covariates indexed by i, βi are regression coefficients

and ϵj,t random noise. For covariates, we consider variables that can reasonably be thought

to impact runoff at the regional scale: catchment-averaged October-May precipitation (P),

relative humidity (RH), temperature (T), snow water equivalent (SWE) and snow fraction of

precipitation (SF). Enhanced precipitation or relative humidity lead to wetter soils and can

be expected to be associated with higher RC values. Similarly, higher temperatures increase

evapotranspiration and tend to decrease runoff. Finally, increased snow cover favors losses by

sublimation and shifts the distribution of runoff regimes towards slower ("trickle") runoff as

opposed to rapid overland flow following rain storms. However, larger snow cover may also

increase the risk of rain-over-ice events, which tend to have very high runoff coefficients [52].

Environmental model covariates are calculated using the ERA/MRCM run and associated

snow model output, with temperature and precipitation bias-corrected as described previously.
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Feature selection is performed by stepwise regression: starting from a model with no covariates,

covariates are added one at a time in the order of highest improvement to model skill, as

determined by its Akaike Information Criterion (AIC). At each step, we also test whether

removing any of the currently selected variables and replacing it by one of the remaining,

non-selected ones, brings any improvement. To estimate the sensitivity of runoff coefficients

to changes in climate conditions, we modify covariate values in the 1982-2011 ERA-Interim

downscaled simulation by adding projected long-term changes in the GCM-driven simulations:

log
(
R̂C

m

j,t

)
= log

(
RCj

)
+
∑

i∈I

βi
(
X i

j,t +X
i
m

)
(7.3)

where m ∈ {1, 2, 3} is model index, I is the set of optimal covariates, X i
j,t are ERA-Interim

downscaled covariate values and X̄ i
m represent long-term covariate changes drawn at random

according to:

X
i
m ∼ N

(
µi
m,rcp − µi

m,hist,
√
σi
m,rcp + σi

m,hist

)
(7.4)

where µi
m,s (respectively σi

m,s) is the average (respectively standard deviation) of covariate i

in model m and scenario s. Results for the three models are then pooled together to yield a

future distribution for RCj,t.

7.4 Results and discussion

7.4.1 Snowpack projections

Annual cycles of reconstructed snow cover as a function of elevation are shown on Figure 7-

4. Overall, all models succeed in accurately reproducing snow cover dynamics in the region,

although the ERA-Interim simulation tends to have a positive bias at high elevations (Fig.

7-4-b) and all simulations have a negative bias at low elevations (Figs. 7-4-d,e and 7-5-a,b).

Despite the statistical downscaling of the MRCM output to 1km, elevation-driven gradients in
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snow cover are also less sharp in the MRCM experiments compared to observations (Fig. 7-5-

a,b). Additionally, compared to ERA-Interim, the GCM-driven experiments generally show too

little snow cover, and a later snowpack build-up (Fig. 7-4-f). All results remain however in a

narrow band around the MODIS values and, excepted for elevations below 2000m, inter-model

spread generally covers observed snow cover values. Inter-annual variability in basin-wide snow

cover is a lower in the simulations compared to MODIS (standard deviation of 220-440 km2

compared to 480 km2 in MODIS) but the discrepancy is mainly due to the negative bias at

low elevations, where snow plays a much more limited role in the overall water balance.

Unsurprisingly, future projections show a stark decline in snow cover across all the region

(Figs. 7-5, 7-6). The greatest relative decline is at low elevations, as expected since they are

already seldom above the 0 ◦C isotherm [29]. Above 2500m, projections still exhibit a 30-40%

decrease in snow cover area under RCP4.5 and 50-60% decrease under RCP8.5. The outlook

is even worse in terms of snowpack water content (Fig. 7-7): it is reduced on average by

60% under RCP4.5 and 80-85% under RCP8.5, bringing its peak value from about 125 million

m3 (MCM) down to 20 MCM (Figs. 7-7-f, 7-8). As discussed in Chapter 5, the projected

decrease in wet-season precipitation is about 25% under RCP4.5 and 40-45% under RCP8.5.

Because most areas in the High Atlas are very close to the zero-degree line, even at high

elevations, warming trends largely amplify the precipitation signal and result in such SWE

declines. Warming causes the percentage of solid precipitation to decrease, particularly at

mid-elevations (2000-2500m) (Fig. 7-9) and also favors melt during winter, thus preventing

the build-up of the snowpack. Detailed input data and snow model projections for the area

and various elevation bands are given in Appendix A.

As discussed previously, the historical SWE peak of 125 MCM is subject to caution; experi-

ments with enhanced precipitation or reduced temperatures suggest it may in fact be as high as

200 MCM. Still, while inter-model spread is large in the historical experiments (≈60MCM) and

still large (≈40MCM) in the RCP4.5 experiment, it is reduced to almost zero under RCP8.5.

Whatever the historical disparity in temperatures or precipitation are between models, they

all agree on the large reduction in snowpack under business-as-usual. This is consistent with

observations that in mountain regions, above-freezing temperatures are common, even at high
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Figure 7-4: Annual cycles of snow cover (in %) in the MODIS observations (black), ERA-
Interim simulation (dashed red) and three GCM-driven historical simulations (solid blue: me-
dian; blue shading: 3-model range), at various elevations ranges within our study area: (a) >
3500m, (b) 3000-3500m, (c) 2500-3000m, (d) 2000-2500m, (e) 1500-2000m and (f) whole area.

altitudes, where average winter temperatures are not far from freezing [157]. Therefore, under

the RCP8.5 scenario, the projected 4 ◦C warming (Chapter 5) would bring all but the very

highest peaks clearly above freezing, and prevent seasonal snowpack accumulation.

Due to the particularly arid climate of the High Atlas, sublimation losses are quite signif-

icant in our study area: about 9% of all snowfall on average, and up to 30% above 3500m
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Figure 7-5: Mean December-to-March (DJFM) fractional snow cover (%) over the basin in (a)
MODIS (2000-2010) data, and (b-d) three-GCM average under the (b) historical (1976-2005),
(c) RCP4.5 (2071-2100) and (d) RCP8.5 (2071-2100) experiments.

[224, 157]. Annual relative sublimation losses are strongly associated with annual-mean pre-

cipitation (Fig. 7-10-a). Losses from latent heat fluxes are much smaller during wet years as

compared to dry years, a relationship robust across all experiments. Wet years indeed bring
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Figure 7-6: Annual cycles of snow cover (in %) in the three GCM-driven experiments under
the historical (blue, 1976-2005), RCP4.5 (purple, 2071-2100) and RCP8.5 (red, 2071-2100)
scenarios, at various elevations ranges within our study area: (a) > 3500m, (b) 3000-3500m,
(c) 2500-3000m, (d) 2000-2500m, (e) 1500-2000m and (f) whole area. Solid lines represent the
three-model medians and the shading corresponds to the three-model spreads.

higher RH over the region, due to enhanced moisture advection from the Atlantic which more

than compensates for the larger heat advection and increased air temperatures that also occur

in parallel [147]. In addition to the influence of higher RH, warmer temperatures in wetter

years also tend to decrease the snow-to-precipitation ratio, thus leading to reduced relative

sublimation losses. This makes the case for higher RC values during wet years. Under future

climate conditions, average relative humidity will decline by 3-6% (Chapter 5), and thus subli-
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Figure 7-7: Same as Fig. 7-6, but for total snow water equivalent (in million m3).

Figure 7-8: Distribution of cumulative basin-wide SWE with elevation in the GCM-driven
experiments, under the historical (black), RCP4.5 (purple) and RCP8.5 (red) scenarios. SWE
is normalized in each model by that model’s historical total basin-wide SWE.
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Figure 7-9: (a-b) Snow fraction of annual precipitation in the (a) historical and (b) RCP8.5
scenario (average between all three GCM-driven simulations). (c) Snow fraction of annual
precipitation as a function of elevation, in each scenario (historical, RCP4.5 and RCP8.5;
three-model average) and in the assimilated control simulation of Chapter 6 ("Obs").

mation rates will be higher when snow is present. However, because the snow-to-precipitation

ratio will also sharply decline due to rising temperatures, the overall loss of annual precipita-

tion by sublimation will tend to decrease by about a third (Fig. 7-10-b).

For the areas as a whole, decasing precipitation and warmer temperatures are the primary

causes of the projected decline in snowpack. In addition, drier soils together with enhanced

absorption of solar energy where snowpack disappears will also lead to enhanced warming

locally, driving yet further snowpack melt. We do not explicitly take this into account in our

model. In particular, the snow albedo effect is largely absent from the MRCM simulations due

to their 12km resolution, which is still too coarse to represent the complex topography. For

areas at the highest elevations (near 4000m) which may still remain largely below freezing in

future winters, melt may not increase very significantly in the middle of winter; however, a

drier atmosphere will still be associated with reduced precipitation and increased sublimation

losses, which will play a critical role in reducing the snowpack. A similar phenomenon has

been occuring at the top of Mount Kilimanjaro (5149m), whose glaciers have been retreating

fast over the last century primarily due to increasing atmospheric dryness that led to higher

sublimation losses [140].
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Figure 7-10: (a) Fraction of annual precipitation lost by sublimation against total annual
precipitation in the MRCM downscaled experiments forced with ERA-Interim (1982-2011,
magenta), the three GCMs (historical, 1976-2005): MPI-ESM-MR (blue), GFDL-ESM2M
(cyan) and IPSL-CM5A-LR (black), and the snow run forced with "observed" MODIS and
TRMM data only. (b) Fraction of annual precipitation lost by sublimation as a function of
altitude range in our study area, for the various downscaled experiments, and in historical
(1976-2005, "+") and RCP8.5 (2071-2100, "∆") scenarios.

7.4.2 Runoff modeling and projections

The panel regression and model selection framework are applied to runoff coefficients and se-

lected covariates over the 1982-2011 period. Stepwise regression yields as optimal covariates

relative humidity and snow fraction. The adjusted r2 is equal to 0.29, meaning that these two

covariates explain a small third of inter-annual variability in RC. Fitted RCs against obser-

vations are shown on Figure 7-11. Consistent with the model r2, fitted values have a much

smaller variance. Still, for all the catchments, except Segmine, we observe a significant positive

relationship between fitted and observed values. The coefficients for RH and snow fraction are

both significant, with βRH > 0 and βSF < 0 (Table 7.1). All else being equal, a larger RH

yields more runoff, and more of the precipitation falling as snow yields less runoff. The effect

of RH on runoff coefficient, as measured by the regression coefficients β in 7.2, is 4-5 times

that of snow, however. As discussed above, we can understand the influence of snow fraction

by noting that a higher snow fraction means more opportunity for sublimation, particularly
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large at high elevations, and evaporation of melted snow, consistent with our analysis of subli-

mation losses (Fig. 7-10). Precipitation in the area tend to occur in short and intense storms,

and quickly saturate the dry soil, leading to rapid overland flow with limited opportunity for

evaporation [72]. By comparison, snowmelt is slow and leads to a more gradual surface flow

with the potential for higher evaporative losses in this climate where evaporation tends to be

water-limited. More winter snow also leads to a higher likelihood of rain-on-snow episodes in

spring, known to cause rapid flooding due to high runoff efficiencies [52]. More snow may also

mean more opportunity for infiltration and aquifer recharge [123]; however, in six out of seven

catchments considered here, base flow is negligible. Still, aquifer discharge may occur naturally

further down the mountains, or artificially via direct groundwater pumping in the agricultural

plains. Compared to surface runoff, groundwater remains a small fraction of water use in

the Oum-Er-Rbia basin (<15%), and even less of available renewable water since aquifers are

largely overdrawn [123] (Chapter 2, Fig. 2-13). Groundwater data are quite scarce in this

region; we make the choice of purely focusing on surface runoff, keeping in mind that a more

complete picture of basin-wide water availability would also require taking aquifer fluxes into

account.

MRCM-BC CHIRPS

r2 0.30 0.36

SF -1.84 4E-03 -1.47 2E-02

RH 5.71 2E-05 8.71 1E-09

Pr – – 2.04E-03 1E-06

Table 7.1: Runoff coefficient model results. The bottom three lines show coefficient values
(left-hand column) and their statistical significance (p-value, right-hand column).

Future runoff projections are characterized by consistent, steep declines in runoff coef-

ficients of 5-17% under RCP4.5 and 15-30% under RCP8.5 (Fig. 7-12-a). The impact of

decreasing RH largely dominates over that of declining snow fraction. This is consistent with

the projection that relative decline in RC is largest in the Tarhat and Chacha catchments,

that both already receive almost no snow in the historical simulations and where therefore
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Figure 7-11: Fitted runoff coefficient values against observed values (defined with TRMM
precipitation), for the seven catchments in our study area. Best-fit linear regression lines are
shown by dashed lines.

declining snow fraction will not matter much. Combining now precipitation and runoff coef-

ficient estimates, we find a 20-40% decrease in runoff in the RCP4.5 experiments, compared

to a 50-65% decline under RCP8.5 (Fig. 7-12-b, Table 7.2). Decreases in precipitation drive

most of the runoff trends, especially in the RCP8.5 scenario. These results are robust to the

choice of the precipitation dataset. Using CHIRPS to define runoff coefficients, average RCs

are generally lower, due to CHIRPS’s wet bias compared to TRMM. The optimal RC model

includes RH and SF as well, but also precipitation as a third variable (Table 7.1). Projected

RC declines are about the same, although tend to be slightly higher (by 3-6% on average).

Our projected runoff trends are consistent with those of El Moçayd et al. (2020) who focused

on other catchments within the Sebou watershed, where snow plays a much smaller role than

in our region [73]. This is not surprising given the weak impact of the declining snow fraction

on runoff coefficients, compared to that of the relative humidity decline.

As a final note, one can ask whether observed runoff trends are consistent with these pro-
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jections. At the country scale, government data indicates that river discharge has indeed

significantly declined over the last 60 to 70 years, at a rate of about 5% per decade (Fig.

2-10). The wet years of the 1960s tend however to bias the result towards a steeper decline

than expected. In this case, natural decadal variability linked to the NAO acted in the same

direction as the expected climate change response. Runoff data from the seven sub-catchments

studied in this chapter are less clear. They cover shorter time periods (by about 25 years) and,

more importantly, begin in the late 1970s, just when the climate was about turner much drier

in Morocco (drier-than-average conditions prevailed from 1980 to the mid-1990s, see Figs. 2-3

and 2-10). Thus, runoff trends tend to be slightly positive (about +1%/yr), though none are

significant, even at the 10% level.

Figure 7-12: (a) Average runoff coefficients for the seven catchments in the observations (black),
and projected average values in the RCP4.5 (blue) and RCP8.5 (red) scenarios. Boxes rep-
resent 90% confidence intervals. (b) Projected relative changes in runoff across the seven
catchments against relative change in snow fraction (x-axis) and change in catchment-wide
relative humidity (y-axis), for the RCP4.5 (blue) and RCP8.5 (red) scenarios.
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Catchment
M. Hassan Tamesmate Tillouguite Segmine Ouchene Tarhat Chacha

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

∆T (◦C) 2.3 4.6 2.2 4.4 2.2 4.5 2.3 4.6 2.3 4.6 2.3 4.8 2.3 4.7

∆Pr (%) -11 -53 -14 -57 -30 -57 -22 -48 -31 -57 -31 -50 -31 -55

∆RH (%) -3.1 -6.2 -2.5 -5.5 -3.2 -6.4 -3.6 -7.1 -3.4 -6.3 -3.2 -6.6 -3.2 -6.1

∆Snow (%) -3.3 -11.3 -3.9 -12.3 -6.7 -15.7 -5.7 -14.9 -6 -11.3 -5 -7.5 -2 -3.2

∆SF (%) -14 -46 -16 -51 -19 -44 -19 -51 -28 -52 -52 -78 -50 -80

∆RC (%) -14 -23 -8 -17 -6 -14 -10 -17 -9 -19 -13 -27 -15 -30

∆Runoff (%) -23 -64 -21 -64 -34 -63 -29 -57 -37 -65 -39 -63 -41 -68

Table 7.2: Long-term (2071-2100 minus 1976-2005) projections for the seven catchments: October-May temperature (◦C), precip-
itation (%), relative humidity (%), absolute and relative snow fraction (%), runoff coefficient (%) and runoff (%), under RCP4.5
and RCP8.5.
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7.5 Conclusion

Based on the robust understanding of its snow water balance in the current climate, we quan-

tified in this final chapter the response of the High Atlas snowpack to climate change using

high-resolution downscaled climate projections. Unsurprisingly, given the warming and drying

trends projected by climate models for this region, we find that the High Atlas snowpack will

significantly decline, even with substantial mitigation of emissions. By the end of the century,

snow may become a rarity below 2000m, and even near the highest peaks, snowpack water

equivalent could decline by 80%. Precipitation decreases of 40-60% are responsible for much

of these trends, with background warming accounting for the rest.

The analysis of runoff coefficients for seven mountain catchments showed that a third of their

inter-annual variability could be explained by large-scale meteorological factors like snow frac-

tion of precipitation and relative humidity. Interestingly, in this region, a larger snow fraction

leads to less runoff. While the reverse is believed to be true at higher latitudes [19], this

finding is consistent with other analyses in warm, semi-arid regions that receive substantial

amounts of snow during winter [52]. Warmer conditions tend to enhance runoff efficiencies by

reducing snowpack – thus limiting sublimation losses and the slow melting of snow, propitious

to evaporation – and by increasing the likelihood of rain-on-snow events that tend to cause

high runoff efficiencies. While decreasing snowfall will partly compensate for the projected

atmospheric drying over the region, runoff coefficients will tend to decline by 5-30% depending

on catchment and scenario. Combined with precipitation trends, basin-wide runoff could be

reduced by 60% in the worst case. In addition, earlier snowmelt will likely lead to lower soil

moisture levels during spring, further enhancing the temperature rise and increasing the risk

of late-season droughts.

The robust physical understanding behind large-scale projections for the region (Chapter 4)

increases the likelihood that the dire projections detailed above will be realized provided green-

house gas emissions are not brought under control. This would deal a severe blow to the region,

jeopardizing its agriculture-based economy and the livelihood of millions of smallholder farm-

ers. Agriculture, which accounts for 90% of current water use, will have no choice but to

adapt. 40-60% declines in precipitation will make rainfed agriculture, already at the limit of
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viability, entirely impossible. At the same time, availability of water for irrigation will also

decline sharply. A change of cropping patterns, like a transition to tree crops with less water

demand and higher economic value like olives, will likely be unavoidable for Morocco to adapt

to this future reality.
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Chapter 8

Conclusion

This thesis brings improvement to our current understanding of precipitation variability and

change in Morocco and the Mediterranean.

In Chapter 3, we investigated the forecast potential of seasonal precipitation in Morocco

using an empirical approach based on sea-surface temperatures as predictors of atmospheric

circulation. Using the CRU TS4 station-based precipitation dataset and gridded ocean tem-

peratures from HadISST, it was shown that 30-40% of the variability in December-to-February

and February-to-April precipitation could be predicted with lead times of at least one month.

Real-time forecasts were also developed, as the first step towards an operational implementa-

tion.

Chapter 4 then assessed wintertime climate projections for the Mediterranean Basin. Based

on theoretical considerations, global climate model projections from the CMIP5 archive and

regional climate simulations, we proposed for the first time a comprehensive physical expla-

nation for the severe drying projected in this region during winter by the end of the 21st

century. This drying directly results from the development of an anomalous anticyclone over

the Mediterranean, itself a response to shifts in the large-scale circulation of the Northern

Hemisphere, and to the relative cooling of Mediterranean Sea temperatures compared to the

surrounding land. We then explained why the western and eastern ends of the basin would

experience the most severe precipitation declines. To the west, over Morocco and the southern
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Iberian Peninsula, the pressure high results in anomalous dry winds from the Sahara which

prevent a rise in atmospheric humidity that would compensate for warming temperatures, thus

leading to a pronounced decrease in relative humidity. To the east, over southern Turkey and

the Levant, the anticyclone triggers anomalous northerlies that cause subsidence and drive

precipitation down as well. Additionally, inter-model spread in circulation and precipitation

projections was connected to uncertainties in the response of the large-scale circulation.

Chapter 5 presented high-resolution simulations of the current and late-21st century climate

of the southwestern Mediterranean developed with the MIT Regional Climate Model. These

projections confirmed the severe wintertime drying simulated by global models, with a 20-30%

decline in precipitation between December and May under a mitigation scenario (RCP4.5), and

35-45% under business-as-usual (RCP8.5). In addition, the simulations helped validate the role

of dry, anomalous winds from the Sahara in driving the regional precipitation decline. Finally,

we used them to analyze trends in future weather extremes, namely spring heatwaves and wet-

season droughts. Our results imply severe impacts on the region’s agriculture, particularly

rainfed, in the coming decades.

Chapter ?? investigated the High Atlas snowpack and snow water balance in the present

climate. Snow is a major component of the hydrological cycle in Morocco, and yet very little is

known about it, mainly due to a lack of observational data. We demonstrated the potential of

remotely-sensed and dynamically-downscaled data assimilated into a simple physically-based

snow model to accurately reproduce the main features of High Atlas snow cover. In addition to

data at the single high-altitude station available, we used satellite-based precipitation, cloud

cover, elevation and temperature data in conjunction with dynamically-downscaled wind and

humidity fields to reconstruct the dynamics of Morocco’s Oum-Er-Rbia catchment snowpack.

We estimated that the snowpack was essentially concentrated above 2500m altitude and held

0.05-0.4km3 at its peak in early February. Sublimation losses were estimated to amount to

0.06-0.14km3, about 10% of all snowfall.

Chapter 7 finally assessed future trends in snowpack and runoff within the Oum-Er-Rbia

watershed. Dynamically-downscaled projections from Chapter 5 were used as input to the snow

model previously implemented. This approch resulted in snowpack water content reduction of
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60 to 80% depending on the emissions scenario, with areas below 2500m of altitude projected

to receive hardly any snow at all in the future. In parallel, the statistical analysis of annual

runoff across seven small mountain catchments within the Oum-Er-Rbia watershed showed

that snow fraction and relative humidity in each catchment jointly account for 30% of inter-

annual variability in runoff coefficients in this region. Unlike mid- to high-latitude watersheds,

increases in snow fraction in the Atlas lead to reduced runoff efficiency, likely because of

enhanced sublimation and evaporation losses. Applying this framework to future climate and

snowpack projections, we estimated that runoff could decline by 20-40% under RCP4.5 and

50-65% under RCP8.5.

In addition to their scientific interest, our results have serious implications for water man-

agement and climate change adaptation in Morocco and the Mediterranean. Our analysis of

projected winter precipitation trends for this region increased our confidence that the regional

drying will occur, which means that countries like Morocco must now prepare for the worst and

begin re-thinking their water use to adapt to a drier future. In that regard, Morocco’s recently

announced 2020-2050 National Water Plan is a step in the right direction. The operational

implementation of seasonal forecasts, as well as the guidance of high-resolution projections,

should be promoted to improve water management and efficiency in this very water-stressed

country.

Still, there remains a number of possibilities for improvement and future research. The bene-

fits of our forecasts could be quantified by modeling the water allocation decision framework

described in Chapter 2 to provide incentives for and potentially limits to their implementation.

As to climate projections, inter-model uncertainty in Mediterranean winter precipitation trends

remains high due to spread in the large-scale circulation response, which should be investigated

actively. There also remain some gaps in our understanding of Mediterranean winter dynami-

cal trends, particularly whether mechanisms other than surface relative cooling and planetary

wave shifts may contribute to them. An improved quantification of the responses to each of our

two proposed mechanisms within a single, coherent modeling framework, could help resolve

that question. Finally, our analysis of regional-scale climate change impacts on snowpack, river

discharge and weather extremes remains limited in scope and should be pursued, especially if

more ground data can be accessed to help constrain projections. In particular, agriculture will
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inevitably be severely impacted, and an in-depth analysis of cropping patterns under future

scenarios is a promising lead. Overall, more work is needed to translate our results into infor-

mation that can be used by local stakeholders to help them cope with short-term uncertainty

and plan ahead for the future.
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Appendix A

High Atlas snowpack: Results of

historical and future simulations
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Elevation
Ann.
prec.

(mm)1

DJFM
prec.

(mm)2

Ann.
snow

(mm)3

DJFM
snow

(mm)4

Snow
frac.
(%)5

Melt
(mm)6

DJFM
Temp.
(◦C)7

DJFM
wind
(m/s)8

DJFM
RH
(%)9

DJFM
SCr
(%)10

DJFM
SWE
(mm)11

Frac.
Area
(%)12

Sublim.
(mm)13

All
217 433 63 84 19 80 4.4 2.6 56 10 6 32 5

205/232 406/460 50/74 48/140 11/33 53/132 3.9/4.8 2.5/2.6 55/59 8/11 3/8 29/37 4/5

≥3500m
295 634 230 349 62 274 -5.9 3.1 62 70 100 98 75

244/352 566/680 199/265 271/467 40/92 242/501 -6.4/-5.8 3/3.2 61/63 64/76 64/155 93/100 55/86

3000-3500m
293 626 213 345 58 303 -3.8 2.9 64 51 59 97 42

256/326 564/670 185/245 226/510 36/90 220/437 -4.5/-3.3 1.8/2.9 62/66 46/57 33/92 94/100 31/47

2500-3000m
227 476 130 217 48 201 -0.5 2.9 61 25 16 90 17

205/240 426/514 107/146 127/358 28/82 130/330 -1.2/0 2.8/2.9 59/63 20/31 8/30 88/91 14/18

2000-2500m
221 453 81 137 31 132 2.9 2.7 57 10 4 57 5

207/235 414/487 62/101 77/239 17/53 77/228 2.3/3.4 – 56/60 8/12 2/7 49/71 5/6

1500-2000m
206 415 19 33 8 32 6.9 2.4 53 1 0 8 1

193/225 394/440 13/23 17/52 4/12 17/52 6.5/7.2 2.4/2.5 52/56 1/2 0/1 5/11 0/2

Table A.1: Snow model results and input data, averaged for the whole study area and various altitudinal bands, under the
historical scenario: (1) Annual precipitation; (2) December-to-Mach (DJFM) precipitation; (3) Annual snowfall; (4) DJFM
snowfall; (5) Fraction of solid precipitation; (6) Total snowmelt; (7) DJFM air temperature; (8) DJFM wind speed; (9) DJFM
relative humidity; (10) DJFM average snow cover; (11) DJFM mean snow water equivalent; (12) Fraction of area with ≥5% snow
cover in DJFM; (13) Total sublimation. For each elevation range, the top line indicates the 3-model average and the bottom line
shows the 3-model range.
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Elevation
Ann.
prec.

(mm)1

DJFM
prec.

(mm)2

Ann.
snow

(mm)3

DJFM
snow

(mm)4

Snow
frac.
(%)5

Melt
(mm)6

DJFM
Temp.
(◦C)7

DJFM
wind
(m/s)8

DJFM
RH
(%)9

DJFM
SCr
(%)10

DJFM
SWE
(mm)11

Frac.
Area
(%)12

Sublim.
(mm)13

All
166 309 52 45 15 41 6.4 2.6 53 7 3 32 4

117/193 247/391 26/72 25/55 9/23 21/51 6.1/6.5 2.5/2.7 48/55 6/8 2/4 29/37 3/4

≥3500m
250 486 224 303 59 244 -4 3 59 44 46 98 60

162/332 349/657 120/326 170/405 38/86 109/335 -4.1/-3.8 1.9/3.2 56/62 35/56 22/68 93/100 45/74

3000-3500m
245 432 206 245 55 213 -1.9 2.9 60 27 19 97 33

165/317 328/587 113/303 134/305 32/81 98/273 -2/-1.6 2.8/3 56/63 24/32 12/23 94/100 28/36

2500-3000m
176 341 97 134 42 123 1.5 2.8 57 11 5 90 13

117/215 250/461 57/133 69/177 22/70 57/163 1.3/1.8 1.7/3 53/60 10/12 3/7 88/91 12/14

2000-2500m
167 320 50 66 21 63 4.9 2.7 54 4 1 57 3

114/194 244/420 21/63 38/80 12/33 35/77 4.7/5.2 2.6/2.8 50/56 3/4 1/1 49/71 3/4

1500-2000m
156 297 9 11 3 9 9 2.5 50 0 0 8 0

114/187 244/365 7/14 6/17 2/4 7/14 8.6/9.3 2.4/2.6 46/53 0/1 – 5/11 –

Table A.2: Same as A.1, for the RCP4.5 scenario.
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Elevation
Ann.
prec.

(mm)1

DJFM
prec.

(mm)2

Ann.
snow

(mm)3

DJFM
snow

(mm)4

Snow
frac.
(%)5

Melt
(mm)6

DJFM
Temp.
(◦C)7

DJFM
wind
(m/s)8

DJFM
RH
(%)9

DJFM
SCr
(%)10

DJFM
SWE
(mm)11

Frac.
Area
(%)12

Sublim.
(mm)13

All
108 208 25 18 6 16 8.5 2.7 48 4 1 10 2

97/118 137/256 14/32 13/24 10/17 10/22 8.1/9.2 2.5/2.9 46/49 3/5 1/2 7/12 –

≥3500m
155 311 127 131 49 97 -2.1 3 56 33 18 85 39

135/187 199/396 90/173 91/180 23/82 72/145 -2.2/-1.8 1.9/3.1 52/60 28/39 6/34 65/99 30/51

3000-3500m
152 281 110 104 44 86 0.1 2.9 56 17 7 74 21

133/175 181/374 73/152 81/147 22/75 59/128 -0.1/0.4 2.8/3.2 53/60 14/21 3/13 59/83 16/27

2500-3000m
206 452 121 183 40 158 -0.3 2.9 59 32 24 87 25

99/120 138/298 33/79 39/79 16/56 32/73 3.3/3.8 2.7/3.1 50/56 4/6 1/3 31/34 5/8

2000-2500m
107 213 29 25 14 24 7 2.8 49 1 0 5 1

97/116 134/275 14/37 17/33 8/24 16/32 6.7/7.5 2.6/3 47/51 0/1 – 4/7 1-2

1500-2000m
102 201 4 3 1 3 11.1 2.6 45 0 0 0 0

93/115 133/243 2/6 2/4 1/2 2/4 10.6/12.1 2.4/2.9 43/47 – – – –

Table A.3: Same as A.1, for the RCP8.5 scenario.
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